Hostname: page-component-68c7f8b79f-8spss Total loading time: 0 Render date: 2025-12-17T23:19:50.175Z Has data issue: false hasContentIssue false

Development is a pathway for understanding visual attention and peripheral function

Published online by Cambridge University Press:  26 November 2025

Chiara Capparini*
Affiliation:
Center for Research in Cognition & Neuroscience (CRCN), Université libre de Bruxelles, Bruxelles, Belgium chiara.capparini@ulb.be
Michelle P.S. To
Affiliation:
Department of Psychology, Lancaster University, Lancaster, UK m.to@lancaster.ac.uk
Vincent M. Reid
Affiliation:
School of Psychology, University of Waikato, Hamilton, New Zealand vincent.reid@waikato.ac.nz
*
*Corresponding author.

Abstract

Visual Attention in Crisis provides the reader with an alternative way to think about the visual attention phenomena–often interpretable in terms of perceptual processes and peripheral vision. We urge an extension of these considerations to developmental science. Infancy research underpins the foundations of mature attentional mechanisms. It may offer a critical test for evolving perceptual limits on attention.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, E. M., Seemiller, E. S., & Smith, L. B. (2022). Scene saliencies in egocentric vision and their creation by parents and infants. Cognition, 229, 105256.CrossRefGoogle ScholarPubMed
Balas, B. (2017). Children’s use of visual summary statistics for material categorization. Journal of Vision, 17(12), 2222.CrossRefGoogle ScholarPubMed
Capparini, C., To, M. P., & Reid, V. M. (2022b). Identifying the limits of peripheral visual processing in 9-month-old infants. Developmental Psychobiology, 64(4), e22274.CrossRefGoogle ScholarPubMed
Capparini, C., To, M. P. S., & Reid, V. M. (2022a). The detection of face-like stimuli at the edge of the infant visual field. Brain Sciences, 12(4), 493.CrossRefGoogle ScholarPubMed
Clohessy, A. B., Posner, M. I., Rothbart, M. K., & Vecera, S. P. (1991). The development of inhibition of return in early infancy. Journal of Cognitive Neuroscience, 3(4), 345350.CrossRefGoogle ScholarPubMed
de Schonen, S., McKenzie, B., Maury, L., & Bresson, F. (1978). Central and peripheral object distances as determinants of the effective visual field in early infancy. Perception, 7(5), 499506.CrossRefGoogle ScholarPubMed
Farzin, F., Rivera, S. M., & Whitney, D. (2010). Spatial resolution of conscious visual perception in infants. Psychological Science, 21(10), 15021509.CrossRefGoogle ScholarPubMed
Finlay, D., & Ivinskis, A. (1984). Cardiac and visual responses to moving stimuli presented either successively or simultaneously to the central and peripheral visual fields in 4-month-old infants. Developmental Psychology, 20(1), 29.CrossRefGoogle Scholar
Hendrickson, A., & Drucker, D. (1992). The development of parafoveal and mid-peripheral human retina. Behavioural Brain Research, 49(1), 2131 CrossRefGoogle ScholarPubMed
Hendry, A., Johnson, M. H., & Holmboe, K. (2019). Early development of visual attention: Change, stability, and longitudinal associations. Annual Review of Developmental Psychology, 1(1), 251275.CrossRefGoogle Scholar
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2015). The faces in infant-perspective scenes change over the first year of life. PloS One, 10(5), e0123780.CrossRefGoogle ScholarPubMed
Johnson, M., & de Haan, M. (2015). Vision, orienting, and attention. In Developmental cognitive neuroscience: An introduction, (4th ed., pp. 83109). Chichester. UK: Wiley Blackwell.Google Scholar
Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2(2), 8195.CrossRefGoogle ScholarPubMed
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1-2), 119.CrossRefGoogle ScholarPubMed
Kaduk, K., Bakker, M., Juvrud, J., Gredebäck, G., Westermann, G., Lunn, J., & Reid, V. M. (2016). Semantic processing of actions at 9 months is linked to language proficiency at 9 and 18 months. Journal of Experimental Child Psychology, 151, 96108.CrossRefGoogle Scholar
Levi, D. M. (2008). Crowding - An essential bottleneck for object recognition: A mini-review. Vision research, 48(5), 635654.CrossRefGoogle ScholarPubMed
Lewis, T. L., & Maurer, D. (1992). The development of the temporal and nasal visual fields during infancy. Vision Research, 32(5), 903911.CrossRefGoogle ScholarPubMed
Mattern, D., Schumacher, P., López, F. M., Raabe, M. C., Ernst, M. R., Aubret, A., & Triesch, J. (2024). MIMo: A multimodal infant model for studying cognitive development. IEEE Transactions on Cognitive and Developmental Systems, 16(4), 12911301.CrossRefGoogle Scholar
Michel, C., Kaduk, K., Ní Choisdealbha, Á., & Reid, V. M. (2017). Event-related potentials discriminate familiar and unusual goal outcomes in 5-month-olds and adults. Developmental Psychology, 53(10), 1833.CrossRefGoogle ScholarPubMed
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 18251828.CrossRefGoogle ScholarPubMed
Reid, V. M., Hoehl, S., Grigutsch, M., Groendahl, A., Parise, E., & Striano, T. (2009). The neural correlates of infant and adult goal prediction: Evidence for semantic processing systems. Developmental Psychology, 45(3), 620.CrossRefGoogle ScholarPubMed
Richards, J. E. (2003). Attention affects the recognition of briefly presented visual stimuli in infants: An ERP study. Developmental Science, 6(3), 312328.CrossRefGoogle ScholarPubMed