Hostname: page-component-857557d7f7-ktsnh Total loading time: 0 Render date: 2025-12-12T20:50:21.177Z Has data issue: false hasContentIssue false

Structural and Cognitive Mechanisms of Group Cohesion in Primates

Published online by Cambridge University Press:  30 April 2024

Robin Dunbar*
Affiliation:
Department of Experimental Psychology, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
*
Corresponding author: Robin Dunbar; Email: robin.dunbar@psy.ox.ac.uk

Short abstract

Living in groups is more stressful and less straightforward than we usually assume. In order to live in large groups, mammals need to find solutions that allow these stresses to be defused. I show that, in primates, this has involved successively adding increasingly costly structural, behavioural, and cognitive solutions that are dependent on the evolution of large brains. Primate social evolution consists of a series of glass ceilings on group size that restrict the habitats that species could occupy.

Information

Type
Target Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbott, D. H. (1984). Behavioral and physiological suppression of fertility in subordinate marmoset monkeys. American Journal of Primatology 6: 169186.Google Scholar
Abbott, D. H., Keverne, E. B., Moore, G. F. & Yodyingyuad, U. (1984). Social suppression of reproduction in subordinate talapoin monkeys, Miopithecus talapoin. International Journal of Primatology 5: 318318.Google Scholar
Abbott, D.H., McNeilly, A.S., Lunn, S.F., Hulme, M.J. & Burden, F.J. (1981). Inhibition of ovarian function in subordinate female marmoset monkeys (Callithrix jacchus jacchus). Journal of Reproduction and Fertility 63: 335345.Google Scholar
Abernethy, K. A., White, L. J. & Wickings, E. J. (2002). Hordes of mandrills (Mandrillus sphinx): extreme group size and seasonal male presence. Journal of Zoology 258: 131137.Google Scholar
Albon, S.D., Mitchell, B. & Staines, B.W. (1983). Fertility and body weight in female red deer: a density-dependent relationship. Journal of Animal Ecology 52: 969980.Google Scholar
Alexander, R. M. & Jayes, A. S. (1983). A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology 201: 135152.Google Scholar
Altmann, J. & Muruthi, P. (1988). Differences in daily life between semiprovisioned and wild-feeding baboons. American Journal of Primatology 15: 213221.Google Scholar
Amir, S., Brown, Z.W. & Amit, Z. (1980). The role of endorphins in stress: Evidence and speculations. Neuroscience and Biobehavioral Reviews 4: 7786.Google Scholar
An, Y., Sun, Z., Li, L., Zhang, Y., & Ji, H. (2013). Relationship between psychological stress and reproductive outcome in women undergoing in vitro fertilization treatment: Psychological and neurohormonal assessment. Journal of Assisted Reproduction and Genetics 30: 3541.Google Scholar
Anderson, C. M. (1981). Subtrooping in a chacma baboon (Papio ursinus) population. Primates 22: 445458.Google Scholar
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R.L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron 65: 550562.Google Scholar
Archie, E. A., Altmann, J. & Alberts, S. C. (2012). Social status predicts wound healing in wild baboons. Proceedings of the National Academy of Sciences USA 109: 90179022.Google Scholar
Arends, J.C., Cheung, M.Y.C., Barrack, M.T. & Nattiv, A. (2012). Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. International Journal of Sport Nutrition and Exercise Metabolism 22: 98108.Google Scholar
Armitage, K. B. (1991). Social and population dynamics of yellow-bellied marmots: results from long-term research. Annual Review of Ecology and Systematics 22: 379407.Google Scholar
Arnold, K. & Aureli, F. (2007). Postconflict reconciliation. In: Campbell, C.J., Fuentes, A., MacKinnon, K., Bearder, S. & Stumpf, R. (ed.) Primates in Perspective, pp. 608625. Oxford: Oxford University Press Google Scholar
Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al. (2008). Interaction ruling animal collective behaviour depends on topological rather than metric distance: evidence from a field study. Proceedings of the National Academy of Sciences USA 105: 12321237.Google Scholar
Bannan, N., Bamford, J. & Dunbar, R.I.M. (2024) The evolution of gender dimorphism in the human voice: the role of octave equivalence. Current Anthropogy (in press).Google Scholar
Bari, A. & Robbins, T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology 108: 4479.Google Scholar
Beauchamp, G., Li, Z., Yu, C., Bednekoff, P. A. & Blumstein, D. T. (2021). A meta-analysis of the group-size effect on vigilance in mammals. Behavioral Ecology 32: 919925.Google Scholar
Bennett, N.C. (1994). Reproductive suppression in social Cryptomys damarensis colonies e—a lifetime of socially-induced sterility in males and females (Rodentia: Bathyergidae). Journal of Zoology 234: 2539.Google Scholar
Bergman, T.J., Beehner, J.C., Cheney, D.L. & Seyfarth, R.M. (2003). Hierarchical classification by rank and kinship in baboons. Science 302: 12341236.Google Scholar
Bertram, B. C. (1980). Vigilance and group size in ostriches. Animal Behaviour 28: 278286.Google Scholar
Bird, D. W., Bird, R. B., Codding, B. F. & Zeanah, D. W. (2019). Variability in the organization and size of hunter-gatherer groups: Foragers do not live in small-scale societies. Journal of Human Evolution 131: 96108.Google Scholar
Björnsdotter, M., Löken, L., Olausson, H., Vallbo, Å. & Wessberg, J. (2009). Somatotopic organization of gentle touch processing in the posterior insular cortex. Journal of Neuroscience 29: 93149320.Google Scholar
Borgeaud, B., Jankowiak, B., Aellen, M., Dunbar, R.I.M. & Bshary, R. (2021). Vervet monkeys socialize more when time budget constraints are experimentally reduced. Ethology 127: 682696.Google Scholar
Bowman, L. A., Dilley, S. R. & Keverne, E. B. (1978). Suppression of oestrogen-induced LH surges by social subordination in talapoin monkeys. Nature 275: 5658.Google Scholar
Braunsdorf, M., Freches, G. B., Roumazeilles, L., Eichert, N., Schurz, M., Uithol, S. Bryant, K.L. & Mars, R.B. (2021). Does the temporal cortex make us human? A review of structural and functional diversity of the primate temporal lobe. Neuroscience & Biobehavioral Reviews 131: 400410.Google Scholar
Brent, L. J., Chang, S. W., Gariépy, J. F. & Platt, M. L. (2014). The neuroethology of friendship. Annals of the New York Academy of Sciences 1316: 117.Google Scholar
Brent, L. J. N., Ruiz-Lambides, A. & Platt, M. L. (2017). Family network size and survival across the lifespan of female macaques. Proceedings of the Royal Society, London, 284B: 20170515.Google Scholar
Brockmeyer, T., Kappeler, P. M., Willaume, E., Benoit, L., Mboumba, S., & Charpentier, M. J. (2015). Social organization and space use of a wild mandrill (Mandrillus sphinx) group. American Journal of Primatology 77: 10361048.Google Scholar
Burton-Chellew, M. & Dunbar, R.I.M. (2015). Hamilton’s Rule predicts anticipated social support in humans. Behavioral Ecology 26: 130137.Google Scholar
Bzdok, D. & Dunbar, R.I.M. (2022). Social isolation and the brain in the pandemic era. Nature Human Behaviour 6: 13331343.Google Scholar
Bzdok, D. & Dunbar, R.IM. (2020). The neurobiology of social distance. Trends in Cognitive Sciences 24: 717734.Google Scholar
Calhim, S., Shi, J. & Dunbar, R. I. M. (2006). Sexual segregation among feral goats: testing between alternative hypotheses. Animal Behaviour 72: 3141.Google Scholar
Cameron, E. Z., Setsaas, T. H. & Linklater, W. L. (2009) Social bonds between unrelated females increase reproductive success in feral horses. Proceedings of the National Academy of Sciences USA 106: 1385013853.Google Scholar
Carlisi, C.O., Moffitt, T.E., Knodt, A.R., Harrington, H., Ireland, D., Melzer, T.R., Poulton, R., Ramrakha, S., Caspi, A., Hariri, A.R. & Viding, E. (2020). Associations between life-course-persistent antisocial behaviour and brain structure in a population-representative longitudinal birth cohort. Lancet Psychiatry 7: 245253.Google Scholar
Carrington, S.J. & Bailey, A.J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Human Brain Mapping 30: 23132335.Google Scholar
Castles, M., Heinsohn, R., Marshall, H. H., Lee, A. E., Cowlishaw, G. & Carter, A. J. (2014). Social networks created with different techniques are not comparable. Animal Behaviour 96: 5967.Google Scholar
Charles, S.J., Farias, M., van Mulukom, V., Saraswati, A., Dein, S., Watts, F. & Dunbar, R.I.M. (2020). Blocking mu-opioid receptors inhibits social bonding in rituals. Biology Letters 16: 20200485.Google Scholar
Cheney, D. L., & Seyfarth, R. M. (1986). The recognition of social alliances by vervet monkeys. Animal Behaviour 34: 17221731.Google Scholar
Cheney, D. L. & Seyfarth, R. M. (1999). Recognition of other individuals’ social relationships by female baboons. Animal Behaviour 58: 6775.Google Scholar
Cheney, D. L., Silk, J. B. & Seyfarth, R. M. (2016). Network connections, dyadic bonds and fitness in wild female baboons. Royal Society Open Science 3: 160255.Google Scholar
Clutton-Brock, T. H., Hodge, S. J., Flower, T. P., Spong, G. F., & Young, A. J. (2010). Adaptive suppression of subordinate reproduction in cooperative mammals. The American Naturalist, 176(5), 664673.Google Scholar
Clutton-Brock, T.H., Guinness, F.E. & Albon, S.D. (1983). The costs of reproduction to red deer hinds. Journal of Animal Ecology 52: 367384.Google Scholar
Collier, M., Albery, G. F., McDonald, G. C. & Bansal, S. (2022). Pathogen transmission modes determine contact network structure, altering other pathogen characteristics. Proceedings of the Royal Society, London, 289B: 20221389.Google Scholar
Cowl, V. B. & Shultz, S. (2017). Large brains and groups associated with high rates of agonism in primates. Behavioral Ecology 28: 803810.Google Scholar
Creel, S., Creel, N., Wildt, D.E. & Monfort, S.L. (1992). Behavioural and endocrine mechanisms of reproductive suppression in Serengeti dwarf mongooses. Animal Behaviour 43: 231245.Google Scholar
Creel, S., Dantzer, B., Goymann, W. & Rubenstein, D.R. (2013). The ecology of stress: effects of the social environment. Functional Ecology 27: 6680.Google Scholar
Croy, I., Luong, A., Triscoli, C., Hofmann, E., Olausson, H.,& Sailer, U. (2016). Interpersonal stroking touch is targeted to C tactile afferent activation. Behavioural Brain Research 297: 3740.Google Scholar
Cruwys, T., Dingle, G. A., Haslam, C., Haslam, S. A., Jetten, J. & Morton, T. A. (2013). Social group memberships protect against future depression, alleviate depression symptoms and prevent depression relapse. Social Science & Medicine 98: 179186.Google Scholar
Cundiff, J. M. & Matthews, K. A. (2018). Friends with health benefits: the long-term benefits of early peer social integration for blood pressure and obesity in midlife. Psychological Science 29: 814823.Google Scholar
Curry, O. & Dunbar, R.I.M. (2013). Do birds of a feather flock together? The relationship between similarity and altruism in social networks. Human Nature 24: 336347 Google Scholar
Damjanovic, L., Roberts, S. G. & Roberts, A. I. (2022). Language as a tool for social bonding: evidence from wild chimpanzee gestural, vocal and bimodal signals. Philosophical Transactions of the Royal Society, London, 377B: 20210311.Google Scholar
Datta, S. (1983). Relative power and the acquisition of rank. In: Hinde, R.A. (ed.) Primate Social Relationships, pp. 103–12. Oxford: Blackwell.Google Scholar
Dávid-Barrett, T. & Dunbar, R. (2013). Processing power limits social group size: computational evidence for the cognitive costs of sociality. Proceedings of the Royal Society, London, 280B: 20131151.Google Scholar
Dávid-Barrett, T. & Dunbar, R.I.M. (2016). Bipedality and hair loss in human evolution revisited: the impact of altitude and activity scheduling. Journal of Human Evolution 94: 7282.Google Scholar
Deacon, T. (1997). The Symbolic Species: The co-evolution of Language and the Human Brain. London: Allen Lane.Google Scholar
Dean, R.F.A. (1949). Women war captives in Russia. British Medical Journal 1: 691695.Google Scholar
Deaner, R.O., Isler, K., Burkart, J. & van Schaik, C.P. (2007). Overall brain size, and not encephalisation quotient, best predicts cognitive ability across non-human primates. Brain Behavior and Evolution 70: 115124.Google Scholar
DeCasien, A.R., Williams, S.A. & Higham, J.P. (2017). Primate brain size is predicted by diet but not sociality. Nature Ecology and Evolution 1: 0112.Google Scholar
Depue, R.A. & Morrone-Strupinsky, J.V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualising a human trait of affiliation. Behavioral & Brain Sciences 28:313395.Google Scholar
Devaine, M., Hollard, G. & Daunizeau, J. (2014). The social Bayesian brain: does mentalizing make a difference when we learn? PLoS Computational Biology 10: e1003992.Google Scholar
Devaine, M., San-Galli, A., Trapanese, C., Bardino, G., Hano, C., Saint Jalme, M., Bouret, S., Masi, S. & Daunizeau, J. (2017). Reading wild minds: a computational assay of theory of mind sophistication across seven primate species. PLoS Computational Biology 13: e1005833.Google Scholar
Dobson, H., Fergani, C., Routly, J.E. & Smith, R.F. (2012). Effects of stress on reproduction in ewes. Animal Reproduction Science 130: 135140.Google Scholar
Dobson, H. & Smith, R.F. (2000). What is stress, and how does it affect reproduction? Animal Reproduction Science 60: 743752.Google Scholar
Dobson, S. D. (2009). Socioecological correlates of facial mobility in nonhuman anthropoids. American Journal of Physical Anthropolopology 139: 413420.Google Scholar
Dobson, S. D. (2012). Coevolution of facial expression and social tolerance in macaques. American Journal of Primatology 74: 229235.Google Scholar
Dunbar, R.I.M, MacCarron, P. & Robertson, C. (2018b). Tradeoff between fertility and predation risk drives a geometric sequence in the pattern of group sizes in baboons. Biology Letters 14: 20170700.Google Scholar
Dunbar, R.I.M. (1980). Determinants and evolutionary consequences of dominance among female gelada baboons. Behavioural Ecology and Sociobiology 7: 253265.Google Scholar
Dunbar, R.I.M. (1983). Structure of gelada baboon reproductive units. IV. Organisation at group level. Zeitschrift für Tierpsychologie 63: 265282.Google Scholar
Dunbar, R.I.M. (1984). Reproductive Decisions: An Economic Analysis of Gelada Baboon Social Strategies. Princeton NJ: Princeton University Press.Google Scholar
Dunbar, R.I.M. (1991). Functional significance of social grooming in primates. Folia Primatologica 57:121131.Google Scholar
Dunbar, R.I.M. (1992). Time: a hidden constraint on the behavioural ecology of baboons. Behavioural Ecology and Sociobiology 31: 3549.Google Scholar
Dunbar, R.I.M. (1993). Coevolution of neocortex size, group size and language in humans. Behavioral and Brain Sciences 16: 681735.Google Scholar
Dunbar, R.I.M. (1995a). The mating system of callitrichid primates. I. Conditions for the coevolution of pairbonding and twinning. Animal Behaviour 50: 10571070.Google Scholar
Dunbar, R.I.M. (1995b). The mating system of callitrichid primates. II. The impact of helpers. Animal Behaviour 50: 10711089.Google Scholar
Dunbar, R.I.M. (1998). The social brain hypothesis. Evolutionary Anthropology 6: 178190.Google Scholar
Dunbar, R.I.M. (2009). Why only humans have language. In: Botha, R. & Knight, C. (eds.) The Prehistory of Language, pp. 1235. Oxford: Oxford university Press.Google Scholar
Dunbar, R.I.M. (2010a). The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neuroscience & Biobehavioral Reviews 34: 260268.Google Scholar
Dunbar, R.I.M. (2010b). Deacon’s dilemma: the problem of pairbonding in human evolution. In: Dunbar, R.I.M., Gamble, C. & Gowlett, J.A.J. (editors) Social Brain, Distributed Mind, pp. 159179. Oxford: Oxford University Press.Google Scholar
Dunbar, R.I.M. (2012). Bridging the bonding gap: the transition from primates to humans. Philosophical Transactions of the Royal Society, London, 367B: 18371846.Google Scholar
Dunbar, R.I.M. (2014). Human Evolution. London: Pelican and New York: Oxford University Press.Google Scholar
Dunbar, R.I.M. (2017). Breaking bread: the functions of social eating. Adaptive Human Behavior and Physiology 3: 198211.Google Scholar
Dunbar, R.I.M. (2018a). The anatomy of friendship. Trends in Cognitive Sciences 22: 3251 Google Scholar
Dunbar, R.I.M. (2018b). Social structure as a strategy to mitigate the costs of group-living: a comparison of gelada and guereza monkeys. Animal Behaviour 136: 5364.Google Scholar
Dunbar, R.I.M. (2019). Fertility as a constraint on group size in African great apes. Biological Journal of the Linnean Society 129: 113.Google Scholar
Dunbar, R.I.M. (2020). Structure and function in human and primate social networks: Implications for diffusion, network stability and health. Proceedings of the Royal Society, London, 476A: 20200446.Google Scholar
Dunbar, R.I.M. (2021a). Virtual touch and the human social world. Current Opinion in Behavioral Science 43: 1419.Google Scholar
Dunbar, R.I.M. (2021b). Friends: Understanding the Power of Our Most Important Relationships. London: Little Brown Google Scholar
Dunbar, R.I.M. (2022a). Managing the stresses of group-living in the transition to village life. Evolutionary Human Sciences 4: e40.Google Scholar
Dunbar, R.I.M. (2022b). Laughter and its role in the evolution of human social bonding. Philosophical Transactions of the Royal Society, London, 289B: 20210176.Google Scholar
Dunbar, R.I.M. (2023). The origins and function of musical performance. Frontiers in Psychology 14: 1257390.Google Scholar
Dunbar, R.I.M., Cornah, L., Daly, F. & Bowyer, K. (2002). Vigilance in humans: a test of alternative hypotheses. Behaviour 139: 695711.Google Scholar
Dunbar, R.I.M. & Dunbar, P. (1975). Social Dynamics of Gelada Baboons. Basel: Karger.Google Scholar
Dunbar, R.I.M. & Dunbar, P. (1976). Contrasts in social structure among black-and-white colobus monkeys. Animal Behaviour 24: 8492.Google Scholar
Dunbar, R.I.M., Frangou, A., Grainger, F. & Pearce, E. (2021a). Laughter influences social bonding but not prosocial generosity to friends and strangers. PLoS One 16: e0256229.Google Scholar
Dunbar, R.I.M., Korstjens, A.H. & Lehmann, J. (2009). Time as an ecological constraint. Biological Reviews 84: 413429.Google Scholar
Dunbar, R.I.M. & MacCarron, P. (2019). Group size as a trade-off between fertility and predation risk: implications for social evolution. Journal of Zoology 308: 915.Google Scholar
Dunbar, R.I.M., MacCarron, P. & Shultz, S. (2018a). Primate social group sizes exhibit a regular scaling pattern with natural attractors. Biology Letters 14: 20170490.Google Scholar
Dunbar, R.I.M. & Nathan, M. (1972). Social organisation of the Guinea baboon, Papio papio, in Senegal. Folia Primatology 17: 321334.Google Scholar
Dunbar, R.I.M., Pearce, E., Tarr, B., Makdani, A., Bamford, J., Smith, S. & McGlone, F. (2021b). Cochlear SGN neurons elevate pain thresholds in response to music. Scientific Reports 11: 14547.Google Scholar
Dunbar, R.I.M. & Shi, J. (2008). Sex differences in feeding activity results in sexual segregation of feral goats. Ethology 114: 444451.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2007a). Evolution in the social brain. Science 317: 13441347.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2007b). Understanding primate brain evolution. Philosophical Transactions of the Royal Society, London 362B: 649658.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2010). Bondedness and sociality. Behaviour 147: 775803.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society, London 372B: 201602244.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2021a). The infertility trap: the fertility costs of group-living in mammalian social evolution. Frontiers in Ecology and Evolution 9: 634664.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2021b). Social complexity and the fractal structure of social groups in primate social evolution. Biological Reviews 96: 18891906.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2023). Four errors and a fallacy: pitfalls for the unwary in comparative brain analyses. Biologial Reviews.Google Scholar
Dunbar, R.I.M. & Shultz, S. (2025). Self-control has a social role in primates, but not in other mammals or birds. Scientific Reports 15: 17566.Google Scholar
Dunbar, R.I.M., Teasdale, B., Thompson, J., Budelmann, F., Duncan, S., van Emde Boas, E. & Maguire, L. (2016). Emotional arousal when watching drama increases pain threshold and social bonding. Royal Society Open Science 3: 160288.Google Scholar
Einarsson, S., Brandt, Y., Lundeheim, N. & Madej, A. (2008). Stress and its influence on reproduction in pigs: a review. Acta Veterinaria Scandinavica, 50: 48.Google Scholar
Emlen, S. T. & Wrege, P. H. (1986). Forced copulations and intra-specific parasitism: two costs of social living in the white-fronted bee-eater. Ethology 71: 229.Google Scholar
Escribano, D., Doldán-Martelli, V., Cronin, K. A., Haun, D. B., van Leeuwen, E. J., Cuesta, J. A. & Sánchez, A. (2022). Chimpanzees organize their social relationships like humans. Scientific Reports 12: 16641.Google Scholar
Espy, K. A., Kaufmann, P. M., McDiarmid, M. D., & Glisky, M. L. (1999). Executive functioning in preschool children: Performance on A-not-B and other delayed response format tasks. Brain and Cognition 41: 178199.Google Scholar
Euker, J.S. & Riegle, G.D. (1973). Effects of stress on pregnancy in the rat. Journal of Reproduction and Fertility 34: 343346.Google Scholar
Fabre-Nys, C., Meller, R.E. & Keverne, E.B. (1982). Opiate antagonists stimulate affiliative behaviour in monkeys. Pharmacology, Biochemistry & Behavior 16: 653659.Google Scholar
Faulkes, C. G., Abbott, D. H., & Jarvis, J. U. M. (1990). Social suppression of ovarian cyclicity in captive and wild colonies of naked mole-rats, Heterocephalus glaber. Journal of Reproduction and Fertility 88: 559568.Google Scholar
Ferin, M. (1984). Endogenous opioid peptides and the menstrual cycle. Trends in Neurosciences 7: 194196.Google Scholar
Fichtel, C. & Kappeler, P. M. (2022). Coevolution of social and communicative complexity in lemurs. Philosophical Transactions of the Royal Society, London, 377B: 20210297.Google Scholar
Fidanza, F., Polimeni, E., Pierangeli, V. & Martini, M. (2021). A better touch: C-tactile fibers related activity is associated to pain reduction during temporal summation of second pain. Journal of Pain 22: 567576.Google Scholar
Finlay, B.L., Darlington, R.B. & Nicastro, N. (2001). Developmental structure in brain evolution. Behavioral and Brain Sciences 24: 263278.Google Scholar
Freeberg, T.M. (2006). Social complexity can drive vocal complexity: group size influences vocal information in Carolina chickadees. Psychological Science 17: 557561.Google Scholar
Frère, C. H., Krützen, M., Mann, J., Connor, R. C., Bejder, L. & Sherwin, W. B. (2010). Social and genetic interactions drive fitness variation in a free-living dolphin population. Proceedings of the National Academy of Sciences USA 10: 1994919954.Google Scholar
Garcia, C., Lee, P.C. & Rosetta, L. (2006). Dominance and reproductive rates in captive female olive baboons, Papio anubis. American Journal of Physical Anthropology 131: 6472.Google Scholar
Geraghty, A.C., Muroy, S.E., Zhao, S., Bentley, G.E., Kriegsfeld, L.J. & Kaufer, D. (2015). Knockdown of hypothalamic RFRP3 prevents chronic stress-induced infertility and embryo resorption. ELife 4: e04316.Google Scholar
Gesquiere, L.R., Altmann, J., Archie, E.A. & Alberts, S.C. (2018). Interbirth intervals in wild baboons: Environmental predictors and hormonal correlates. American Journal of Physical Anthropology 166: 107126.Google Scholar
Giorgi, M. S., Arlettaz, R., Christe, P. & Vogel, P. (2001). The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). Proceedings of the Royal Society, London, 268, 20712075.Google Scholar
Gordon, K., Hodgen, G.D., & Richardson, D.W. (1992). Postpartum lactational anovulation in a nonhuman primate (Macaca fascicularis): endogenous opiate mediation of suckling-induced hyperprolactinemia. Journal of Clinical Endocrinology & Metabolism 75: 5967.Google Scholar
Gore, M. A. (1994). Dyadic and triadic aggression and assertiveness in adult female rhesus monkeys, Macaca mulatta, and hamadryas baboons, Papio hamadryas. Animal Behaviour 48: 385392.Google Scholar
Gowlett, J.A.J., Gamble, C. & Dunbar, R.I.M. (2012). Human evolution and the archaeology of the social brain. Current Anthropology 53: 693722.Google Scholar
Grabowskia, M., Kopperud, B.T., Tsuboib, M., Hansen, M.T. (2023). Both diet and sociality affect primate brain-size evolution. Systemic Biology (in press).Google Scholar
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology 78: 13601380.Google Scholar
Hamilton, M.J., Milne, B.T., Walker, R.S., Burger, O. & Brown, J.H. (2007). The complex structure of hunter–gatherer social networks. Proceedings of the Royal Society, London, 274B: 21952203.Google Scholar
Harcourt, A. H. & Stewart, K. J. (2007). Gorilla Society: Conflict, Compromise, and Cooperation Between the Sexes. Chicago: University of Chicago Press.Google Scholar
Harel, R., Loftus, J. C. & Crofoot, M. C. (2021). Locomotor compromises maintain group cohesion in baboon troops on the move. Proceedings of the Royal Society, London, 288B: 20210839.Google Scholar
Hayashi, T., Akikawa, R., Kawasaki, K., Egawa, J., Minamimoto, T., Kobayashi, K., … & Hasegawa, I. (2020). Macaques exhibit implicit gaze bias anticipating others’ false-belief-driven actions via medial prefrontal cortex. Cell Reports 30: 44334444.Google Scholar
Healy, S.D. & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society, London, 274B: 453464.Google Scholar
Henzi, S.P., de Sousa Pereira, L., Hawker-Bond, D., Stiller, J., Dunbar, R.I.M. & Barrett, L. (2007). Look who’s talking: developmental trends in the size of conversational cliques. Evolution and Human Behavior 28: 6674.Google Scholar
Hill, R.A., Lycett, J. & Dunbar, R.I.M. (2000). Ecological determinants of birth intervals in baboons. Behavioral Ecology 11: 560564.Google Scholar
Holt-Lunstad, J., Smith, T. B. & Layton, J. B. (2010). Social relationships and mortality risk: a meta-analytic review. PLoS Medicine 7: e1000316.Google Scholar
Hoogland, J. L. (1981). The evolution of coloniality in white-tailed and blacktailed prairie dogs (Sciuridae: Cynomys leucurus and C. ludovicianus). Ecology 62: 252272.Google Scholar
Hoshino, J. (1985). Feeding ecology of mandrills (Mandrillus sphinx) in Campo animal reserve, Cameroon. Primates 26: 248273.Google Scholar
Howlett, T.A. & Rees, L.H. (1986). Endogenous opioid peptides and hypothalamo-pituitary function. Annual Review of Physiology 48:527–36Google Scholar
Huchard, E. & Cowlishaw, G. (2011). Female–female aggression around mating: an extra cost of sociality in a multimale primate society. Behavioral Ecology 22: 10031011.Google Scholar
Isaksson, E., Urhan, A. U., & Brodin, A. (2018). High level of self-control ability in a small passerine bird. Behavioral Ecology and Sociobiology 72: 17.Google Scholar
Iwasa, T., Matsuzaki, T., Yano, K. & Irahara, M. (2017). Gonadotropin-inhibitory hormone plays roles in stress-induced reproductive dysfunction. Frontiers in Endocrinology 8: 62.Google Scholar
Jackson, E. E., McGlone, F. P. & Haggarty, C. J. (2021). The social brain has a nerve: insights from attachment and autistic phenotypes. Current Opinion in Behavioral Sciences 45: 101114.Google Scholar
Johnson-Ulrich, L. & Holekamp, K.E. (2020). Group size and social rank predict inhibitory control in spotted hyaenas. Animal Behaviour 160: 157168.Google Scholar
Judge, P. G. (1991). Dyadic and triadic reconciliation in pigtail macaques (Macaca nemestrina). American Journal of Primatology 23: 225237.Google Scholar
Kajokaite, K., Whalen, A., Panchanathan, K. & Perry, S. (2019). White-faced capuchin monkeys use both rank and relationship quality to recruit allies. Animal Behaviour 154: 161169.Google Scholar
Kalra, S.P. & Kalra, P.S. (1996). Nutritional infertility: the role of the interconnected hypothalamic neuropeptide Y–galanin–opioid network. Frontiers in Neuro-endocrinology 17: 371401.Google Scholar
Kamilar, J.M. & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society, London, 368B: 20120341.Google Scholar
Kanai, R., Bahrami, B., Roylance, R. & Rees, G. (2012). Online social network size is reflected in human brain structure. Proceedings of the Royal Society, London, 279B:13271334.Google Scholar
Kenny, E., Birkhead, T. R. & Green, J. P. (2017). Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years. Behavioral Ecology 28: 11421148.Google Scholar
Keverne, E.B., Martensz, N. & Tuite, B. (1989). Beta-endorphin concentrations in cerebrospinal fluid of monkeys are influenced by grooming relationships. Psychoneuroendocrinology 14:155161.Google Scholar
Kiesow, H., Dunbar, R.I.M., Kable, J.W., Kalenscher, T., Vogeley, K., Schilbach, L., Marquand, A.F., Wiecki, T.V. & Bzdok, D. (2020). 10,000 social brains: Sex differentiation in human brain anatomy. Science Advances 6: eaaz1170.Google Scholar
Kim, D. A., Benjamin, E. J., Fowler, J. H. & Christakis, N. A. (2016). Social connectedness is associated with fibrinogen level in a human social network. Proceedings of the Royal Society, London, 283B: 20160958.Google Scholar
Kinderman, P., Dunbar, R.I.M. & Bentall, R.P. (1998). Theory-of-mind deficits and causal attributions. British Journal of Psychology 89: 191204.Google Scholar
King, A.J. & Cowlishaw, G. (2009). All together now: behavioural synchrony in baboons. Animal Behaviour 78: 13811387.Google Scholar
Kirk, R. (1994). Raw Feeling: A Philosophical Account of the Essence of Consciousness. Oxford: Oxford University Press.Google Scholar
Korstjens, A., Lehmann, J. & Dunbar, R.I.M. (2010). Resting time as an ecological constraint on primate biogeography. Animal Behaviour 79: 361374.Google Scholar
Korstjens, A.H. & Dunbar, R.I.M. (2007). Time constraints limit group sizes and distribution in red and black-and-white colobus monkeys. International Journal of Primatology 28: 551575.Google Scholar
Kubenova, B., Konecna, M., Majolo, B., Smilauer, P., Ostner, J. & Schülke, O. (2017). Triadic awareness predicts partner choice in male–infant–male interactions in Barbary macaques. Animal Cognition, 20: 221232.Google Scholar
Kudo, H. & Dunbar, R.I.M. (2001). Neocortex size and social network size in primates. Animal Behaviour 62: 711722.Google Scholar
Kummer, H. (1968). Social Organization of Hamadryas Baboons. Basel: Karger.Google Scholar
Kummer, H., Götz, W. & Angst, W. (1974). Triadic differentiation: an inhibitory process protecting pair bonds in baboons. Behaviour 49: 6287.Google Scholar
Kwak, S., Joo, W., Youm, Y. & Chey, J. (2018). Social brain volume is associated with in-degree social network size among older adults. Proceedings of the Royal Society, London, 285B: 20172708.Google Scholar
Laatikainen, T.J. (1991). Corticotropin-releasing hormone and opioid peptides in reproduction and stress. Annals of Medicine 23: 489496.Google Scholar
Lazarus, J. (1978). Vigilance, flock size and domain of danger size in white-fronted goose. Wildfowl 29: 135145.Google Scholar
Lehmann, J. & Dunbar, R.I.M. (2008). Network cohesion, group size and neocortex size in female-bonded Old World primates. Proceedings of the Royal Society, London, 276B: 44174422.Google Scholar
Lehmann, J., Korstjens, A.H. & Dunbar, R.I.M. (2007a). Fission-fusion social systems as a strategy for coping with ecological constraints: a primate case. Evolutionary Ecology 21: 613634.Google Scholar
Lehmann, J., Korstjens, A.H. & Dunbar, R.I.M. (2007b). Group size, grooming and social cohesion in primates. Animal Behaviour 74:16171629.Google Scholar
Lehmann, J., Lee, P.C. & Dunbar, R.I.M. (2014). Unravelling the evolutionary function of communities. In: Dunbar, R.I.M., Gamble, C. & Gowlett, J.A.J. (eds) Lucy to Language: the Benchmark Papers, pp. 245276. Oxford: Oxford University Press.Google Scholar
Lehmann, J., Majolo, B. & McFarland, R. (2016). The effects of social network position on the survival of wild Barbary macaques, Macaca sylvanus. Behavioral Ecology 27: 2028.Google Scholar
Lewis, P., Birch, A., Hall, A. & Dunbar, R.I.M. (2017). Higher order intentionality tasks are cognitively more demanding. Social, Cognitive and Affective Neuroscience 12: 10631071.Google Scholar
Lewis, P., Rezaie, R., Browne, R., Roberts, N. & Dunbar, R. (2011). Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage 57: 16241629.Google Scholar
Li, W., Mai, X. & Liu, C. (2014). The default mode network and social understanding of others: what do brain connectivity studies tell us. Frontiers in Human Neuroscience 8: 74.Google Scholar
Li, X.F., Knox, A.M.I. & O’Byrne, K.T. (2010). Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Research 1364: 153163.Google Scholar
Linklater, W. L., Cameron, E. Z., Minot, E. O. & Stafford, K. J. (1999). Stallion harassment and the mating system of horses. Animal Behaviour 58: 295306.Google Scholar
Loseth, G.E., Ellingsen, D.M. & Leknes, S. (2014). State-dependent m-opioid modulation of social motivation – a model. Frontiers of Behavioral Neuroscience 8: 430.Google Scholar
Lukas, D. & Clutton-Brock, T. (2018). Social complexity and kinship in animal societies. Ecology Letters 21: 11291134.Google Scholar
Machin, A. & Dunbar, R.I.M. (2011). The brain opioid theory of social attachment: a review of the evidence. Behaviour 148: 9851025.Google Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., Aureli, F., Baker, J. M., Bania, A. E., Barnard, A. M., Boogert, N. J., Brannon, E. M., Bray, E. E., Bray, J., Brent, J. M., et al. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences USA 111: E2140E2148.Google Scholar
Madsen, E., Tunney, R., Fieldman, G., Plotkin, H., Dunbar, R.I.M., Richardson, J. & McFarland, D.J. (2007). Kinship and altruism: a cross-cultural experimental study. British Journal of Psychology 98: 339359.Google Scholar
Mandler, R. N., Biddison, W. E., Mandler, R. A. Y. A. & Serrate, S. A. (1986). beta-Endorphin augments the cytolytic activity and interferon production of natural killer cells. Journal of Immunology 136: 934939.Google Scholar
ManyPrimates, Aguenounoun, G., Allritz, M., Altschul, D. M., Ballesta, S.B., and 74 others (2020). The evolution of primate short-term memory. Animal Behavior and Cognition 9: 428516.Google Scholar
Mars, R. B., Neubert, F. X., Noonan, M. P., Sallet, J., Toni, I. & Rushworth, M. F. (2012). On the relationship between the “default mode network” and the “social brain”. Frontiers in Human Neuroscience 6: 189.Google Scholar
Massen, J., Sterck, E. & de Vos, H. (2010). Close social associations in animals and humans: functions and mechanisms of friendship. Behaviour 147: 13791412.Google Scholar
Maynard Smith, J. & Szathmáry, E. (1997). The Major Transitions in Evolution. Oxford: Oxford University Press.Google Scholar
McComb, K. & Semple, S. (2005). Coevolution of vocal communication and sociality in primates. Biology Letters 1: 381385 Google Scholar
McFarland, R. & Majolo, B. (2013). Coping with the cold: predictors of survival in wild Barbary macaques, Macaca sylvanus. Biology Letters 9: 20130428.Google Scholar
McNeilly, A.S. (2001a). Lactational control of reproduction. Reproduction, Fertility and Development 13: 583590.Google Scholar
McNeilly, A.S., Forsyth, I.A. & McNeilly, J. R. (1994). Regulation of post-partum fertility in lactating mammals. In: Marshall’s Physiology of Reproduction, pp. 10371101. Berlin: Springer.Google Scholar
Meguerditchian, A., Marie, D., Margiotoudi, K., Roth, M., Nazarian, B., Anton, J.-L. & Claidière, N. (2020). Baboons (Papio anubis) living in larger social groups have bigger brains. Evolution and Human Behavior 42: 3034.Google Scholar
Mesnick, S. L. (1997) Sexual alliances: evidence and evolutionary implications. In: Gowaty, P.A. (editor) Feminism and Evolutionary Biology. London: Chapman & Hall.Google Scholar
Mielke, A., Samuni, L., Preis, A., Gogarten, J. F., Crockford, C. & Wittig, R. M. (2017). Bystanders intervene to impede grooming in Western chimpanzees and sooty mangabeys. Royal Society Open Science 4: 171296.Google Scholar
Mischel, W. & Ebbesen, E.B. (1970). Attention in delay of gratification. Journal of Personality and Social Psychology 16: 329337.Google Scholar
Moehlman, P.D. & Hofer, H. (1997). Cooperative breeding, reproductive suppression, and body mass in canids. In Solomon, N.G., & French, J.A. (Eds.), Cooperative Breeding in Mammals, pp. 76128. Cambridge, U.K.: Cambridge University Press.Google Scholar
Moffitt, T., Caspi, A., Rutter, M. & Silva, P. (2001). Sex Differences in Antisocial Behaviour: Conduct Disorder, Delinquency, and Violence in the Dunedin Longitudinal Study. Cambridge: Cambridge University Press.Google Scholar
Monsivais, M., Bhattacharya, K., Ghosh, A., Dunbar, R.I.M. & Kaski, K. (2017). Seasonal and geographical impact on human resting periods. Scientific Reports 7: 10717.Google Scholar
Morales Picard, A., Mundry, R., Auersperg, A. M., Boeving, E. R., Boucherie, P. H., Bugnyar, T., … & Slocombe, K. E. (2020). Why preen others? Predictors of allopreening in parrots and corvids and comparisons to grooming in great apes. Ethology 126: 207228.Google Scholar
Mount, L.E. (1979). Adaptation to Thermal Environment: Man and his Productive Animals. London: Edward Arnold.Google Scholar
Noonan, M., Mars, R., Sallet, J., Dunbar, R.I.M. & Fellows, L. (2018). The structural and functional brain networks that support human social networks. Behavioural Brain Research 355: 1223.Google Scholar
Nummenmaa, L., Tuominen, L., Dunbar, R., Hirvonen, J., Manninen, S., Arponen, E., Machin, A., Hari, R., Jääskeläinen, I.P. & Sams, M. (2016). Reinforcing social bonds by touching modulates endogenous µ-opioid system activity in humans. NeuroImage 138: 242247.Google Scholar
Nuñez, C. M. V., Adelman, J. S. & Rubenstein, D. I. (2015). Sociality increases juvenile survival after a catastrophic event in the feral horse (Equus caballus). Behavioral Ecology 26: 138147.Google Scholar
O’Connell, S. & Dunbar, R.I.M. (2002). A test for comprehension of false belief in chimpanzees. Evolution & Cognition 9: 131139.Google Scholar
Olausson, H., Wessberg, J., Morrison, I., McGlone, F. & Vallbo, A. (2010). The neurophysiology of unmyelinated tactile afferents. Neuroscience & Biobehavioral Reviews 34: 185191.Google Scholar
Passingham, R.E. (2021). Understanding the Prefrontal Cortex: Selective Advantage, Connectivity, and Neural Operations. Oxford: Oxford University Press.Google Scholar
Passingham, R.E. & Wise, S.P. (2012). The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution and the Origin of Insight. Oxford: Oxford University Press.Google Scholar
Patzelt, A., Zinner, D., Fickenscher, G., Diedhiou, S., Camara, B., Stahl, D. & Fischer, J. (2011). Group composition of Guinea baboons (Papio papio) at a water place suggests a fluid social organization. International Journal of Primatology 32: 652668.Google Scholar
Pearce, E., Launay, J. & Dunbar, R.I.M. (2015). The ice-breaker effect: singing mediates fast social bonding. Royal Society Open Science 2: 150221.Google Scholar
Pearce, E., Launay, J., MacCarron, P. & Dunbar, R.I.M. (2017b). Tuning in to others: Exploring relational and collective bonding in singing and non-singing groups over time. Psychology of Music 45: 496512.Google Scholar
Pearce, E., Launay, J., van Duijn, M., Rotkirch, A., David-Barrett, T. & Dunbar, R.I.M. (2016). Singing together or apart: The effect of competitive and cooperative singing on social bonding within and between sub-groups of a university fraternity. Psychogy of Music 44: 1255–73.Google Scholar
Pearce, E., Shuttleworth, A., Grove, M., & Layton, R. (2014). The costs of being a high latitude hominin. In: Dunbar, R.I.M., Gamble, C. & Gowlett, J.A.J. (eds.) Lucy to Language: The Benchmark Papers, pp. 356379. Oxford: Oxford University Press.Google Scholar
Pearce, E., Wlodarski, R., Machin, A. & Dunbar, R.I.M. (2017a). Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. Proceedings of the National Academy of Sciences USA 114: 53005305.Google Scholar
Pearce, E., Wlodarski, R., Machin, A. & Dunbar, R.I.M. (2018). The influence of genetic variation on social disposition, romantic relationships and social networks: a replication study. Adaptive Human Behavior and Physiology 4: 400422.Google Scholar
Pearce, E., Wlodarski, R., Machin, A. & Dunbar, R.I.M. (2019). Exploring the links between dispositions, romantic relationships, support networks and community inclusion in men and women. PloS One 14: e0216210.Google Scholar
Pettay, J.E., Lahdenperä, M., Rotkirch, A. & Lummaa, V. (2016). Costly reproductive competition between co-resident females in humans. Behavioural Ecology 27: 16011608.Google Scholar
Pierce, B.N., Hemsworth, P.H., Rivalland, E.T.A., Wagenmaker, E.R., Morrissey, A.D., Papargiris, M.M., Clarke, I.J., Karsch, F.J., Turner, A.I. & Tilbrook, A.J. (2008). Psychosocial stress suppresses attractivity, proceptivity and pulsatile LH in the ewe. Hormones and Behavior 54: 424434.Google Scholar
Pollard, K.A. & Blumstein, D.T. (2008). Time allocation and the evolution of group size. Animal Behaviour 76: 16831699.Google Scholar
Powell, J., Kemp, G., Dunbar, R., Roberts, N., Sluming, V. & García-Fiñana, M. (2014). Different association between intentionality competence and prefrontal volume in left- and right-handers. Cortex 54: 6376.Google Scholar
Powell, J., Lewis, P., Dunbar, R.I.M., García-Fiñana, M. & Roberts, N. (2010). Orbital prefrontal cortex volume correlates with social cognitive competence. Neuropsychologia 48: 35543562.Google Scholar
Powell, J., Lewis, P.A., Roberts, N., García-Fiñana, M. & Dunbar, R.I.M. (2012). Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans. Proceedings of the Royal Society, London, 279B: 21572162.Google Scholar
Powell, L.E., Isler, K. & Barton, R.A. (2017). Re-evaluating the link between brain size and behavioural ecology in primates. Proceedings of the Royal Society, London, 284B: 20171765.Google Scholar
Prior, J.C. (2022). Adaptive, reversible, hypothalamic reproductive suppression: More than functional hypothalamic amenorrhea. Frontiers in Endocrinology 13: 893889.Google Scholar
Puente, J., Maturana, P., Miranda, D., Navarro, C., Wolf, M. E. & Mosnaim, A. D. (1992). Enhancement of human natural killer cell activity by opioid peptides: similar response to methionine-enkephalin and β-endorphin. Brain, Behavior, and Immunity: 3239.Google Scholar
Pusey, A. E., & Schroepfer-Walker, K. (2013). Female competition in chimpanzees. Philosophical Transactions of the Royal Society, London, 368B: 20130077.Google Scholar
Radford, A. N., & Du Plessis, M. A. (2006). Dual function of allopreening in the cooperatively breeding green woodhoopoe, Phoeniculus purpureus. Behavioral Ecology and Sociobiology 61: 221230.Google Scholar
Rawlings, B. S., van Leeuwen, E. J. & Davila-Ross, M. (2023). Chimpanzee communities differ in their inter-and intrasexual social relationships. Learning & Behavior 51: 4858.Google Scholar
Riters, L. V., Kelm-Nelson, C. A. & Spool, J. A. (2019). Why do birds flock? A role for opioids in the reinforcement of gregarious social interactions. Frontiers in Physiology 10: 421.Google Scholar
Roberts, A. I. & Roberts, S.B.G. (2020). Communicative roots of complex sociality and cognition. Biological Reviews 95: 5173.Google Scholar
Roberts, S.B.G. & Dunbar, R.I.M. (2015). Managing relationship decay: network, gender, and contextual effects. Human Nature 26: 426450.Google Scholar
Roberts, S.C. & Dunbar, R.I.M. (1991). Climatic influences on the behavioural ecology of Chanler’s mountain reedbuck in Kenya. African Journal of Ecology 29: 316329.Google Scholar
Rosenquist, J. N., Fowler, J. H. & Christakis, N. A. (2011). Social network determinants of depression. Molecular Psychiatry 16: 273.Google Scholar
Roumazeilles, L., Lange, F. J., Benn, R. A., Andersson, J. L., Bertelsen, M. F., Manger, P. R., … & Mars, R. B. (2022). Cortical morphology and white matter tractography of three phylogenetically distant primates: Evidence for a simian elaboration. Cerebral Cortex 32: 16081624.Google Scholar
Roumazeilles, L., Schurz, M., Lojkiewiez, M., Verhagen, L., Schüffelgen, U., Marche, K., … & Sallet, J. (2021). Social prediction modulates activity of macaque superior temporal cortex. Science Advances 7: eabh2392.Google Scholar
Rowell, T.E. (1970). Baboon menstrual cycles affected by social environment. Journal of Reproduction and Fertility 21: 133141.Google Scholar
Ruckstuhl, K. E. & Kokko, H. (2002). Modelling sexual segregation in ungulates: effects of group size, activity budgets and synchrony. Animal Behaviour 64: 909914.Google Scholar
Ruckstuhl, K. E. & Neuhaus, P. (2002). Sexual segregation in ungulates: a comparative test of three hypotheses. Biological Reviews 77: 7796.Google Scholar
Russell, Y., Call, J. & Dunbar, R.I.M. (2008). Image scoring in great apes. Behavioral Processes 78: 108111.Google Scholar
Sallet, J., Mars, R.B., Noonan, M.P., Andersson, J.L., O’Reilly, J.X., Jbabdi, S., Croxson, P.L., Jenkinson, M., Miller, K.L. & Rushworth, M.F.S. (2011). Social network size affects neural circuits in macaques. Science 334: 697700.Google Scholar
Saltzman, W., Schultz-Darken, N. J. & Abbott, D. H. (1997). Familial influences on ovulatory function in common marmosets (Callithrix jacchus). American Journal of Primatology 41: 159177.Google Scholar
Santini, Z., Jose, P., Koyanagi, A., Meilstrup, C., Nielsen, L., Madsen, K., Hinrichsen, C., Dunbar, R. I. M. & Koushede, V. (2021). The moderating role of social network size in the temporal association between formal social participation and mental health: a longitudinal analysis using two consecutive waves of the Survey of Health, Ageing and Retirement in Europe (SHARE). Social Psychiatry and Psychiatric Epidemiology 56: 417428.Google Scholar
Sarkar, D. K., Sengupta, A., Zhang, C., Boyadjieva, N. & Murugan, S. (2012). Opiate antagonist prevents μ- and δ-opiate receptor dimerization to facilitate ability of agonist to control ethanol-altered natural killer cell functions and mammary tumor growth. Journal of Biological Chemistry 287: 1673416747.Google Scholar
Schenker, J. G., Meirow, D. & Schenker, E. (1992). Stress and human reproduction. European Journal of Obstetrics & Gynecology and Reproductive Biology 45: 18.Google Scholar
Schino, G., Tiddi, B. & Polizzi di Sorrentino, E. (2006). Simultaneous classification by rank and kinship in Japanese macaques. Animal Behaviour 71: 10691074.Google Scholar
Schliep, K.C., Mumfored, S.L., Vladutiu, C.J., Ahrens, K.A., et al. (2015). Perceived stress, reproductive hormones, and ovulatory function: A prospective cohort study. Epidemiology 26: 177184.Google Scholar
Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Size So Important? Cambridge: Cambridge University Press.Google Scholar
Seifer, D.B. & Collins, R. L. (1990). Current concepts of b-endorphin physiology in female reproductive dysfunction. Fertility and Sterility 54: 757771.Google Scholar
Seyfarth, R. M. & Cheney, D. L. (1984). Grooming, alliances and reciprocal altruism in vervet monkeys. Nature 308: 541543.Google Scholar
Sheiner, E., Sheiner, E. K., Potashnik, G., Carel, R. & Shoham-Vardi, I. (2003). The relationship between occupational psychological stress and female fertility. Occupational Medicine 53: 265269.Google Scholar
Shi, J., Dunbar, R.I.M. & Beauchamp, G. (2010). Group-size effect on vigilance and foraging in a predator-free population of feral goats (Capra hircus) on the Isle of Rum, NW Scotland. Ethology 116: 329337.Google Scholar
Shultz, S. & Dunbar, R. I. M. (2010a). Encephalisation is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences, USA, 107: 2158221586.Google Scholar
Shultz, S. & Dunbar, R.I.M. (2010b). Species differences in executive function correlate with hippocampus volume and neocortex ratio across non-human primates. Joiurnal of Comparative Psychology 124: 252260.Google Scholar
Shultz, S. & Dunbar, R.I.M. (2010c). Species differences in executive function correlate with hippocampus volume and neocortex ratio across non-human primates. Journal of Comparative Psychology 124: 252260.Google Scholar
Shultz, S. & Dunbar, R.I.M. (2022). Socioecological complexity in primate groups and its cognitive correlates. Philosophical Transactions of the Royal Society, London, 377B: 20210296.Google Scholar
Sigg, H. & Stolba, A. (1981). Home range and daily march in a hamadryas baboon troop. Folia Primatologica 36: 4075.Google Scholar
Silk, J. B. (1999). Male bonnet macaques use information about third-party rank relationships to recruit allies. Animal Behaviour 58: 4551.Google Scholar
Silk, J.B. (2002). Using the ‘F’-word in primatology. Behaviour 139, 421446.Google Scholar
Silk, J.B., Alberts, S. C. & Altmann, J. (2003). Social bonds of female baboons enhance infant survival. Science 302: 12321234.Google Scholar
Silk, J.B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R., Wittig, R. M., Seyfarth, R. M. & Cheney, D. L. (2009). The benefits of social capital: close social bonds among female baboons enhance offspring survival. Proceedings of the Royal Society, London, 276B: 30993104.Google Scholar
Silk, J.B., Beehner, J. C., Bergman, T. J., Crockford, C., Engh, A. L., Moscovice, L. R., Wittig, R. M., Seyfarth, R. M. & Cheney, D. L. (2010). Strong and consistent social bonds enhance the longevity of female baboons. Current Biology 20: 13591361.Google Scholar
Sinha, A. (1998). Knowledge acquired and decisions made: triadic interactions during allogrooming in wild bonnet macaques, Macaca radiata. Philosophical Transactions of the Royal Society, London, 353B:619631.Google Scholar
Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: a topographical perspective. Nature Reviews Neuroscience 22: 503513.Google Scholar
Smith, J.E., Fichtel, C., Holmes, R.K., Kappeler, P.M., van Vugt, M. & Jaeggi, A.V. (2022). Sex bias in intergroup conflict and collective movements among social mammals: male warriors and female guides. Philosophical Transactions of the Royal Society, London, 377B: 20210142.Google Scholar
Smith-Aguilar, S. E., Aureli, F., Busia, L., Schaffner, C. & Ramos-Fernández, G. (2019). Using multiplex networks to capture the multidimensional nature of social structure. Primates 60: 277295.Google Scholar
Smuts, B. B. (1985). Sex and Friendship in Baboons. London: Routledge.Google Scholar
Sokal, R. & Rolf, F. (1995). Biometry. New York: WF Freeman Google Scholar
Son, Y.L., Ubuka, T., Millar, R.P. & Kanasaki, H. (2012). Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK Pathway in L[beta]T2 cells. Endocrinology 153: 23322343.Google Scholar
Stein, Z., & Susser, M. (1975). Fertility, fecundity, famine: food rations in the Dutch famine 1944/5 have a causal relation to fertility, and probably to fecundity. Human Biology 47: 131154.Google Scholar
Stevens, J.R. (2014). Evolutionary pressures on primate intertemporal choice. Proceedings of the Royal Society, London, 281B: 20140499.Google Scholar
Stiller, J. & Dunbar, R.I.M. (2007). Perspective-taking and memory capacity predict social network size. Social Networks 29: 93104.Google Scholar
Strier, K. B., Lee, P. C. & Ives, A. R. (2014). Behavioral flexibility and the evolution of primate social states. PloS One 9: e114099.Google Scholar
Sueur, C., Deneubourg, J.L. & Petit, O. (2011). From the first intention movement to the last joiner: macaques combine mimetic rules to optimize their collective decisions. Proceedings of the Royal Society, London, 278B: 1697–704.Google Scholar
Sumpter, D.J.T. (2010). Collective Animal Behavior. Princeton NJ: Princeton University Press.Google Scholar
Sutcliffe, A.G., Dunbar, R.I.M., Binder, J. & Arrow, H. (2012). Relationships and the social brain: integrating psychological and evolutionary perspectives. British Journal of Psychology 103: 149168.Google Scholar
Sutcliffe, A.G., Dunbar, R.I.M. & Wang, D. (2016). Modelling the evolution of social structure. PLoS One 11: e0158605.Google Scholar
Suvilehto, J., Glerean, E., Dunbar, R.I.M., Hari, R. & Nummenmaa, L. (2015). Topography of social touching depends on emotional bonds between humans. Proceedings of the National Academy of Sciences, USA, 112: 13811–16.Google Scholar
Suvilehto, J., Nummenmaa, L., Harada, T., Dunbar, R.I.M., Hari, R., Turner, R., Sadato, N. & Kitada, R. (2019). Cross-cultural similarity in relationship-specific social touching. Proceedings of the Royal Society, London, 286B: 20190467.Google Scholar
Tarr, B., Launay, J., Cohen, E. & Dunbar, R.I.M. (2015). Synchrony and exertion during dance independently raise pain threshold and encourage social bonding. Biology Letters 11: 20150767.Google Scholar
Tarr, B., Launay, J. & Dunbar, R.I.M. (2016). Silent disco: dancing in synchrony leads to elevated pain thresholds and social closeness. Evolution and Human Behavior 37: 343349 Google Scholar
Tarr, B., Launay, J. & Dunbar, R.I.M. (2017). Naltrexone blocks endorphins released when dancing in synchrony. Adaptive Human Behavior & Physiology 3: 241254.Google Scholar
Testard, C., Brent, L. J., Andersson, J., Chiou, K. L., Negron-Del Valle, J. E., … & Sallet, J. (2022). Social connections predict brain structure in a multidimensional free-ranging primate society. Science Advances 8: eabl5794.Google Scholar
Tremblay, R. E., Pihl, R. O., Vitaro, F. & Dobkin, P. L. (1994). Predicting early onset of male antisocial behavior from preschool behavior. Archives of General Psychiatry 51: 732739.Google Scholar
Tuulari, J. J., Tuominen, L., de Boer, F. E., Hirvonen, J., Helin, S., Nuutila, P. & Nummenmaa, L. (2017). Feeding releases endogenous opioids in humans. Journal of Neuroscience 37: 82848291.Google Scholar
Underwood, R. (1982). Vigilance behaviour in grazing African antelopes. Behaviour 79: 81107.Google Scholar
van Overwalle, F. (2009). Social cognition and the brain: a metaanalysis. Human Brain Mapping 30: 829858.Google Scholar
van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. Ithaca NY: Cornell University Press.Google Scholar
Vicsek, T. & Zafeiris, A. (2012). Collective motion. Physics Reports 517: 71140.Google Scholar
von Borell, E., Dobson, H. & Prunier, A. (2007). Stress, behaviour and reproductive performance in female cattle and pigs. Hormones and Behavior 52: 130138.Google Scholar
West, B., Dunbar, R.I.M., Culbreth, G. & Grigolini, P. (2023). Fractal structure of human and primate social networks optimizes information flow. Proceedings of the Royal Society, London, 479A: 20230028.Google Scholar
West, B., Massari, G.F., Culbreth, G., Failla, R., Bologna, M., Dunbar, R.I.M. & Grigolini, P. (2020). Relating size and functionality in human social networks through complexity. Proceedings of the National Academy of Sciences, USA, 117: 1835518358.Google Scholar
Williams, N.I., Caston-Balderrama, A.L., Helmreich, D.L., Parfitt, D.B., Nosbisch, C. & Cameron, J.L. (2001). Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea. Endocrinology 142: 23812389.Google Scholar
Wilson, M. & Mesnick, S. L. (1997). An empirical test of the bodyguard hypothesis. In: Gowaty, P.A. (editor) Feminism and Evolutionary Biology: Boundaries, Intersections and Frontiers, pp. 505511. London: Chapman & Hall.Google Scholar
Wittig, R. M., Crockford, C., Langergraber, K. E., & Zuberbühler, K. (2014). Triadic social interactions operate across time: a field experiment with wild chimpanzees. Proceedings of the Royal Society, London, 281B: 20133155.Google Scholar
Wittig, R. M., Crockford, C., Lehmann, J., Whitten, P. L., Seyfarth, R. M. & Cheney, D. L. (2008). Focused grooming networks and stress alleviation in wild female baboons. Hormones and Behavior 54: 170177.Google Scholar
Wittig, R. M., Crockford, C., Weltring, A., Langergraber, K. E., Deschner, T. & Zuberbühle, K. (2016). Social support reduces stress hormone levels in wild chimpanzees across stressful events and everyday affiliations. Nature Communications 7: 18.Google Scholar
Yang, Y.C., Boen, C., Gerken, K., Li, T., Schorpp, K. & Harris, K.M. (2016). Social relationships and physiological determinants of longevity across the human life span. Proceedings of the National Academy of Sciences USA 113: 578583.Google Scholar
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology 106: 11251165.Google Scholar
Yetish, G., Kaplan, H., Gurven, M., Wood, B., Pontzer, H., Manger, P. R., … & Siegel, J. M. (2015). Natural sleep and its seasonal variations in three pre-industrial societies. Current Biology 25: 28622868.Google Scholar
Young, A.J., Carlson, A.A., Monfort, S.L., Russell, A.F., Bennett, N.C. & Clutton-Brock, T.H. (2006). Stress and the suppression of subordinate reproduction in cooperatively breeding meerkats. Proceedings of the National Academy of Sciences, USA, 103: 1200512010.Google Scholar
Zacur, H.A., Chapanis, H.P., Lake, C.R., Ziegler, M. & Tyson, J.E. (1976). Galactorrhea-amenhorrea: Psychological interaction with neuroendocrine function. American Journal of Obstetrics and Gynecology 125: 859862.Google Scholar
Zhou, W-X., Sornette, D., Hill, R.A. & Dunbar, R.I.M. (2005). Discrete hierarchical organization of social group sizes. Proceedings of the Royal Society, London, 272B: 439444.Google Scholar
Ziegler, T.E., Widowski, T.M., Larson, M.L. & Snowdon, C.T. (1990). Nursing does affect the duration of the post-partum to ovulation interval in cottontop tamarins (Saguinus oedipus). Journal of Reproduction and Fertility 90: 563570.Google Scholar
Supplementary material: File

Dunbar supplementary material

Dunbar supplementary material
Download Dunbar supplementary material(File)
File 19.6 KB