Hostname: page-component-7f64f4797f-d87pz Total loading time: 0 Render date: 2025-11-07T23:35:39.029Z Has data issue: false hasContentIssue false

A multi-trait embodied framework for the evolution of brains and cognition across animal phyla

Published online by Cambridge University Press:  28 March 2024

Sheryl Coombs*
Affiliation:
Department of Biological Sciences, Bowling Green State University, Bowling Green, US scoombs@bgsu.edu
Michael Trestman
Affiliation:
Independent researcher michael.a.trestman@gmail.com
*
Corresponding author: Sheryl Coombs; Email: scoombs@bgsu.edu

Abstract

Among non-human animals, crows, octopuses and honeybees are well-known for their complex brains and cognitive abilities. Widening the lens from the idiosyncratic abilities of exemplars like these to those of animals across the phylogenetic spectrum begins to reveal the ancient evolutionary process by which complex brains and cognition first arose in different lineages. The distribution of 35 phenotypic traits in 17 metazoan lineages reveals that brain and cognitive complexity in only three lineages (vertebrates, cephalopod mollusks, and euarthropods) can be attributed to the pivotal role played by body, sensory, brain and motor traits in active visual sensing and visuomotor skills. Together, these pivotal traits enabled animals to transition from largely reactive to more proactive behaviors, and from slow and two-dimensional motion to more rapid and complex three-dimensional motion. Among pivotal traits, high-resolution eyes and laminated visual regions of the brain stand out because they increased the processing demands on and the computational power of the brain by several orders of magnitude. The independent acquisition of pivotal traits in cognitively complex (CC) lineages can be explained as the completion of several multi-trait transitions over the course of evolutionary history, each resulting in an increasing level of complexity that arises from a distinct combination of traits. Whereas combined pivotal traits represent the highest level of complexity in CC lineages, combined traits at lower levels characterize many non-CC lineages, suggesting that certain body, sensory and brain traits may have been linked (the trait-linkage hypothesis) during the evolution of both CC and non-CC lineages.

Information

Type
Target Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aguilar-Arguello, S., & Nelson, X. J. (2021). Jumping spiders: An exceptional group for comparative cognition studies. Learning & Behavior, 49(3), 276291. https://doi.org/10.3758/s13420-020-00445-2 Google Scholar
Alikaya, A., Rack-Wildner, M., & Stauffer, W. R. (2018). Reward and value coding by dopamine neurons in non-human primates. Journal of Neural Transmission, 125(3), 565574. https://doi.org/10.1007/s00702-017-1793-9 Google Scholar
Allen, C. (2017). On (not) defining cognition. Synthese (Dordrecht), 194(11), 42334249. https://doi.org/10.1007/s11229-017-1454-4 Google Scholar
Anderson, R. C., & Mather, J. A. (2010). It’s all in the cues: Octopuses (enteroctopus dofleini) learn to open jars. Ferrantia, 59, 813.Google Scholar
Astley, H. C. (2012). Getting around when you’re round: Quantitative analysis of the locomotion of the blunt-spined brittle star, ophiocoma echinata. Journal of Experimental Biology, 215(Pt 11), 1923. https://doi.org/10.1242/jeb.068460 Google Scholar
Atick, J. J., & Redlich, A. N. (1990). Towards a theory of early visual processing. Neural Computation, 2(3), 308320.Google Scholar
Au, W. W. L., & Simmons, J. A. (2007). Echolocation in dolphins and bats. Physics Today, 60(9), 4045. https://doi.org/10.1063/1.2784683 Google Scholar
Baiandina, I. S., Kirin, M. P., & Krivenko, O. V. (2022). Black sea mnemiopsis leidyi (ctenophora) adult locomotion and light-induced behavior in laboratory experiments. Journal of Sea Research, 180, 102152. https://doi.org/10.1016/j.seares.2021.102152 Google Scholar
Barbato, M., Bernard, M., Borrelli, L., & Fiorito, G. (2007). Body patterns in cephalopods polyphenism as a way of information exchange: Image: Information and control. Pattern Recognition Letters, 28(14), 18541864.Google Scholar
Barron, A. B., Halina, M., & Klein, C. (2023). Transitions in cognitive evolution. Proceedings of the Royal Society B, 290(2002), 20230671. https://doi.org/10.1098/rspb.2023.0671 Google Scholar
Barton, R. A. (1998). Visual specialization and brain evolution in primates. Proceedings of the Royal Society.B, Biological Sciences, 265(1409), 19331937. https://doi.org/10.1098/rspb.1998.0523 Google Scholar
Barton, R. A. (2004). Binocularity and brain evolution in primates. Proceedings of the National Academy of Sciences - PNAS, 101(27), 1011310115. https://doi.org/10.1073/pnas.0401955101 Google Scholar
Barrett, L., Henzi, S. P., & Barton, R. A. (2022). Experts in action: Why we need an embodied social brain hypothesis. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 377(1844), 20200533. https://doi.org/10.1098/rstb.2020.0533 Google Scholar
Bayne, T., Brainard, D., Byrne, R. W., Chittka, L., Clayton, N., Heyes, C., Mather, J., Ölveczky, B., Shadlen, M., & Suddendorf, T. (2019). What is cognition? Current Biology, 29(13), R608R615.Google Scholar
Biewener, A., & Patek, S. (2018). Animal locomotion. Oxford University Press. https://doi.org/10.1093/oso/9780198743156.001.0001 Google Scholar
Birch, J., Ginsburg, S., & Jablonka, E. (2020). Unlimited associative learning and the origins of consciousness: A primer and some predictions. Biology & Philosophy, 35(6), 56. https://doi.org/10.1007/s10539-020-09772-0 Google Scholar
Boal, J. G., Dunham, A. W., Williams, K. T., & Hanlon, R. T. (2000). Experimental evidence for spatial learning in octopuses (octopus bimaculoides). Journal of Comparative Psychology (1983), 114(3), 246252. https://doi.org/10.1037/0735-7036.114.3.246 Google Scholar
Boxshall, G. A. (2004). The evolution of arthropod limbs. Biological Reviews of the Cambridge Philosophical Society, 79(2), 253300. https://doi.org/10.1017/S1464793103006274 Google Scholar
Brazeau, M. D., & Friedman, M. (2015). The origin and early phylogenetic history of jawed vertebrates. Nature (London), 520(7548), 490497. https://doi.org/10.1038/nature14438 Google Scholar
Brembs, B., & Heisenberg, M. (2000). The operant and the classical in conditioned orientation of drosophila melanogaster at the flight simulator. Learning & Memory (Cold Spring Harbor, N.Y.), 7(2), 104115. https://doi.org/10.1101/lm.7.2.104 Google Scholar
Brembs, B. (2009). The importance of being active. Journal of Neurogenetics, 23(1-2), 120126. https://doi.org/10.1080/01677060802471643 Google Scholar
Bridi, J. C., Ludlow, Z. N., Kottler, B., Hartmann, B., Vanden Broeck, L., Dearlove, J., Göker, M., Strausfeld, N. J., Callaerts, P., & Hirth, F. (2020). Ancestral regulatory mechanisms specify conserved midbrain circuitry in arthropods and vertebrates. Proceedings of the National Academy of Sciences - PNAS, 117(32), 1954419555. https://doi.org/10.1073/pnas.1918797117 Google Scholar
Briggs, D. E. (1994). Giant predators from the cambrian of china. Science (American Association for the Advancement of Science), 264(5163), 1283. https://doi.org/10.1126/science.264.5163.1283 Google Scholar
Britayev, T. A., & Martin, D. (2021). Behavioral traits and territoriality in the symbiotic scaleworm ophthalmonoe pettiboneae . Scientific Reports, 11(1), 116.Google Scholar
Budelmann, B. U. (1988). Morphological diversit of equilibrium receptor systems in aquatic invertebrates. In Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. (Eds.), Sensory biology of aquatic animals (pp. 757782). Springer-Verlag.Google Scholar
Budelmann, B. U., & Young, J. Z. (1984). The statocyst-oculomotor system of octopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Philosophical Transactions of the Royal Society of London.B, Biological Sciences, 306(1127), 159189.Google Scholar
Bugnyar, T., Reber, S. A., & Buckner, C. (2016). Ravens attribute visual access to unseen competitors. Nature Communications, 7(1), 10506. https://doi.org/10.1038/ncomms10506 Google Scholar
Bullock, T., & Horridge, G. A. (1965). Structure and function in the nervous systems of invertebrates. San Francisco: Freeman.Google Scholar
Burton, P. M. (2008). Insights from diploblasts; the evolution of mesoderm and muscle. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 310B(1), 514. https://doi.org/10.1002/jez.b.21150 Google Scholar
Butler, A. B. (2000). Chordate evolution and the origin of craniates: An old brain in a new head. The Anatomical Record, 261(3), 111125. https://doi.org/10.1002/1097-0185(20000615)261:3 Google Scholar
Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134(1), 2536. https://doi.org/10.1016/j.cell.2008.06.030 Google Scholar
Cheong, H. S., Siwanowicz, I., & Card, G. M. (2020). Multi-regional circuits underlying visually guided decision-making in drosophila . Current Opinion in Neurobiology, 65, 7787. https://doi.org/10.1016/j.conb.2020.10.010 Google Scholar
Chittka, L. (2017). Bee cognition. Current Biology, 27(19), R1049R1053. https://doi.org/10.1016/j.cub.2017.08.008 Google Scholar
Clark, A. (1999). An embodied cognitive science? Trends in Cognitive Sciences, 3(9), 345351. https://doi.org/10.1016/S1364-6613(99)01361-3 Google Scholar
Clark, E. G., Kanauchi, D., Kano, T., Aonuma, H., Briggs, D. E. G., & Ishiguro, A. (2019). The function of the ophiuroid nerve ring: How a decentralized nervous system controls coordinated locomotion. Journal of Experimental Biology, 222(Pt 2), 110. https://doi.org/10.1242/jeb.192104 Google Scholar
Clayton, N. S. (2017). Episodic-like memory and mental time travel in animals. In Call, J., Burghardt, Gordon M., Pepperberg, Irene M., Snowdon, Charles T. & and Zentall, Thomas Ed.. (Eds.), APA handbook of comparative psychology: Perception, learning, and cognition (pp. 227243). American Psychological Association. https://doi.org/10.1037/0000012-011 Google Scholar
Coates, M. I. (1994). The origin of vertebrate limbs. Development (Suppl.), 169. https://doi.org/10.1242/dev.1994.Supplement.169 Google Scholar
Coates, M. I. (2003). The evolution of paired fins. Theory in Biosciences = Theorie in Den Biowissenschaften, 122(2–3), 266287. https://doi.org/10.1007/s12064-003-0057-4 Google Scholar
Coates, M. I., Jeffery, J. E., & Ruta, M. (2002). Fins to limbs: What the fossils say. Evolution & Development, 4(5), 390401. https://doi.org/10.1046/j.1525-142X.2002.02026.x Google Scholar
Collett, M., Chittka, L., & Collett, T. (2013). Spatial memory in insect navigation. Current Biology, 23(17), R789R800. https://doi.org/10.1016/j.cub.2013.07.020 Google Scholar
Cummins, S. F., & Wyeth, R. C. (2014). Olfaction in gastropods. In Di Cosmo, A. , & Winlow, W. (Eds.), Neuroecology and neuroethology in molluscs: The interface between behaviour and environment (pp. 4572). Nova Science Publishers, Inc. Hauppauge, NY.Google Scholar
Czarkwiani, A., Ferrario, C., Dylus, D. V., Sugni, M., & Oliveri, P. (2016). Skeletal regeneration in the brittle star amphiura filiformis . Frontiers in Zoology, 13(1), 18. https://doi.org/10.1186/s12983-016-0149-x Google Scholar
Darroch, S. A. F., Rahman, I. A., Gibson, B., Racicot, R. A., & Laflamme, M. (2017). Inference of facultative mobility in the enigmatic ediacaran organism parvancorina. Biology Letters (2005), 13(5), 20170033. https://doi.org/10.1098/rsbl.2017.0033 Google Scholar
Deary, I. J. (2020). Intelligence : A very short introduction (2nd ed ed.). Oxford University Press.Google Scholar
Degan, S., Isozaki, Y., Xingliang, Z., Jian, H., & Maruyama, S. (2014). Birth and early evolution of metazoans. Gondwana Research, 25(3), 884895. https://doi.org/10.1016/j.gr.2013.09.001 Google Scholar
De Vivo, G., Lautenschlager, S., & Vinther, J. (2021) Three-dimensional modelling, disparity and ecology of the first cambrian apex predators. Proceedings - Royal Society. Biological Sciences, 288(1955), 20211176. https://doi.org/10.1098/rspb.2021.1176 Google Scholar
Dickinson, E., Young, M. W., & Granatosky, M. C. (2024). Beakiation: How a novel parrot gait expands the locomotor repertoire of living birds. Royal Society Open Science, 11(1), 231397. https://doi.org/10.1098/rsos.231397 Google Scholar
Dong, E. M., & Allison, W. T. (2021). Vertebrate features revealed in the rudimentary eye of the pacific hagfish (eptatretus stoutii). Proceedings of the Royal Society.B, Biological Sciences, 288(1942), 20202187. https://doi.org/10.1098/rspb.2020.2187 Google Scholar
Dunbar, R. I. M., & Shultz, S. (2017). Why are there so many explanations for primate brain evolution? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1727), 20160244. https://doi.org/10.1098/rstb.2016.0244 Google Scholar
Dunbar, R. I. M., & Shultz, S. (2007). Evolution in the social brain. Science, 317(5843), 13441347. https://doi.org/10.1126/science.1145463 Google Scholar
Dunn, C. W., Giribet, G., Edgecombe, G. D., & Hejnol, A. (2014). Animal phylogeny and its evolutionary implications. Annual Review of Ecology, Evolution, and Systematics, 45(1), 371395. https://doi.org/10.1146/annurev-ecolsys-120213-091627 Google Scholar
Egelhaaf, M., Boeddeker, N., Kern, R., Kurtz, R., & Lindemann, J. P. (2012). Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits, 6, 108. https://doi.org/10.3389/fncir.2012.00108 Google Scholar
Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature (London), 414(6862), 443446. https://doi.org/10.1038/35106560 Google Scholar
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science (American Association for the Advancement of Science), 306(5703), 19031907. https://doi.org/10.1126/science.1098410 Google Scholar
Erwin, D. H. (2020). The origin of animal body plans: A view from fossil evidence and the regulatory genome. Development (Cambridge), 147(4), 114. https://doi.org/10.1242/dev.182899 Google Scholar
Esteve-Altava, B., Pierce, S. E., Molnar, J. L., Johnston, P., Diogo, R., & Hutchinson, J. R. (2019). Evolutionary parallelisms of pectoral and pelvic network-anatomy from fins to limbs. Science Advances, 5(5), eaau7459. https://doi.org/10.1126/sciadv.aau7459 Google Scholar
Farmer, W. (1970). Swimming gastropods (opisthobranchia and prosobranchia). Veliger, 13(1), 7389. https://search.proquest.com/docview/1521382465 Google Scholar
Feinberg, T. E., & Mallatt, J. M. (2018). Consciousness demystified (1st ed.). The MIT Press. https://doi.org/10.7551/mitpress/11793.001.0001 Google Scholar
Feldman Barrett, L., & Finlay, B. L. (2018). Concepts, goals and the control of survival-related behaviors. Current Opinion in Behavioral Sciences, 24, 172179. https://doi.org/10.1016/j.cobeha.2018.10.001 Google Scholar
Fernald, R. D. (2006). Casting a genetic light on the evolution of eyes. Science (American Association for the Advancement of Science), 313(5795), 19141918. https://doi.org/10.1126/science.1127889 Google Scholar
Finn, J. K., Tregenza, T., & Norman, M. D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19(23), R1069R1070. https://doi.org/10.1016/j.cub.2009.10.052 Google Scholar
Gallo, V., & Chittka, L. (2018). Cognitive aspects of comb-building in the honeybee? Frontiers in Psychology, 9, 900. https://doi.org/10.3389/fpsyg.2018.00900 Google Scholar
Gehring, W. J. (2004). Historical perspective on the development and evolution of eyes and photoreceptors. The International Journal of Developmental Biology, 48(8–9), 707. https://doi.org/10.1387/ijdb.041900wg Google Scholar
Gehring, W. J. (2011). Chance and necessity in eye evolution. Genome Biology and Evolution, 3, 10531066. https://doi.org/10.1093/gbe/evr061 Google Scholar
Gehring, W. J. (2014). The evolution of vision. Wiley Interdisciplinary Reviews. Developmental Biology, 3(1), 140. https://doi.org/10.1002/wdev.96 Google Scholar
Gibson, J. J. (1950). The perception of the visual world. Houghton Mifflin.Google Scholar
Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69(6), 477491. https://doi.org/10.1037/h0046962 Google Scholar
Ginsburg, S., & Jablonka, E. (2019). The evolution of the sensitive soul: Learning and the origins of consciousness (1st ed.). The MIT Press. https://doi.org/10.7551/mitpress/11006.001.0001 Google Scholar
Ginsburg, S., & Jablonka, E. (2021). Evolutionary transitions in learning and cognition. Philosophical Transactions of the Royal Society B, 376(1821), 20190766. https://doi.org/10.1098/rstb.2019.0766 Google Scholar
Godfrey-Smith, P. (2020). Metazoa: Animal life and the birth of the mind. Farrar, Straus and Giroux.Google Scholar
Gollisch, T., & Meister, M. (2010). Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron, 65(2), 150164. https://doi.org/10.1016/j.neuron.2009.12.009 Google Scholar
Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence (Norwood), 24(1), 1323. https://doi.org/10.1016/S0160-2896(97)90011-8 Google Scholar
Grünert, U., & Martin, P. R. (2020). Cell types and cell circuits in human and non-human primate retina. Progress in Retinal and Eye Research, 78, 100844. https://doi.org/10.1016/j.preteyeres.2020.100844 Google Scholar
Gühmann, M., Jia, H., Randel, N., Verasztó, C., Bezares-Calderón, L. A., Michiels, N. K., Yokoyama, S., & Jékely, G. (2015). Spectral tuning of phototaxis by a go-opsin in the rhabdomeric eyes of platynereis . Current Biology, 25(17), 22652271. https://doi.org/10.1016/j.cub.2015.07.017 Google Scholar
Halder, G., Callaerts, P., & Gehring, W. J. (1995). New perspectives on eye evolution. Current Opinion in Genetics & Development, 5(5), 602609. https://doi.org/10.1016/0959-437X(95)80029-8 Google Scholar
Hanlon, R. (2007). Cephalopod dynamic camouflage. Current Biology, 17(11), R400R404. https://doi.org/10.1016/j.cub.2007.03.034 Google Scholar
Hanlon, R. T., & Messenger, J. B. (2018). Senses, effectors and the brain. In Hanlon, R. T. , & Messenger, J. B. (Eds.), Cephalopod behaviour (pp. 1644). https://doi.org/10.1017/9780511843600.004 Google Scholar
Hahn, J., Monavarfeshani, A., Qiao, M., Kao, A. H., Kölsch, Y., Kumar, A., Kunze, V.P., Rasys, A. M., Richardson, R., Wekselblatt, J. B., Baier, H., Lucas, R. J., Li, W., Meister, M., Trachtenberg, J. T., Yan, W., Peng, Y., Sanes, J. R., & Shekhar, K. (2023). Evolution of neuronal cell classes and types in the vertebrate retina. Nature, 624(7991), 415424. https://doi.org/10.1038/s41586-023-06638-9 Google Scholar
Healy, S. D., & Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society. B, Biological Sciences, 274(1609), 453464. https://doi.org/10.1098/rspb.2006.3748 Google Scholar
Heisenberg, M. (1994). Voluntariness (willkürfähigkeit) and the general organization of behavior. Life Sciences Research Reports, 147.Google Scholar
Hermans, C. O., & Eakin, R. M. (1974). Fine structure of the eyes of an alciopid polychaete, vanadis tagensis (annelida). Zeitschrift Für Morphologie Der Tiere, 79(4), 245267. https://doi.org/10.1007/BF00277508 Google Scholar
Heuer, C. M., Müller, C. H., Todt, C., & Loesel, R. (2010). Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in annelida. Frontiers in Zoology, 7(1), 13. https://doi.org/10.1186/1742-9994-7-13 Google Scholar
Hinman, V. F., & Burke, R. D. (2018). Embryonic neurogenesis in echinoderms. Wiley Interdisciplinary Reviews. Developmental Biology, 7(4), e316n/a. https://doi.org/10.1002/wdev.316 Google Scholar
Hirth, F. (2010). On the origin and evolution of the tripartite brain. Brain, Behavior and Evolution, 76(1), 310. https://doi.org/10.1159/000320218 Google Scholar
Hochner, B., & Glanzman, D. L. (2016). Evolution of highly diverse forms of behavior in molluscs. Current Biology, 26(20), R965R971. https://doi.org/10.1016/j.cub.2016.08.047 Google Scholar
Hofman, M. A. (2019). On the nature and evolution of the human mind. Progress in Brain Research, 250, 251283. https://doi.org/10.1016/bs.pbr.2019.03.016 Google Scholar
Holland, L. Z., Carvalho, J. E., Escriva, H., Laudet, V., Schubert, M., Shimeld, S. M., & Yu, J. (2013). Evolution of bilaterian central nervous systems: A single origin? EvoDevo, 4, 27. https://escholarship.org/uc/item/21b9b330 Google Scholar
Hollo, G., & Novak, M. (2012). The manoeuvrability hypothesis to explain the maintenance of bilateral symmetry in animal evolution. Biology Direct, 7(1), 22. https://doi.org/10.1186/1745-6150-7-22 Google Scholar
Horridge, G. A. (1986). A theory of insect vision: Velocity parallax. Proceedings of the Royal Society of London. Series B.Biological Sciences, 229(1254), 1327.Google Scholar
Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. American Journal of Ophthalmology, 140(5), 969. https://doi.org/10.1016/j.ajo.2005.08.052 Google Scholar
How, M. J., Norman, M. D., Finn, J., Chung, W., & Marshall, N. J. (2017). Dynamic skin patterns in cephalopods. Frontiers in Physiology, 8, 393. https://doi.org/10.3389/fphys.2017.00393 Google Scholar
Huber, R., Panksepp, J. B., Nathaniel, T., Alcaro, A., & Panksepp, J. (2011). Drug-sensitive reward in crayfish: An invertebrate model system for the study of seeking, reward, addiction, and withdrawal. Neuroscience and Biobehavioral Reviews, 35(9), 18471853. https://doi.org/10.1016/j.neubiorev.2010.12.008 Google Scholar
Hunt, G. R., & Gray, R. D. (2003). Diversification and cumulative evolution in new caledonian crow tool manufacture. Proceedings of the Royal Society. B, Biological Sciences, 270(1517), 867874. https://doi.org/10.1098/rspb.2002.2299 Google Scholar
Hunt, G. R. (2014). New caledonian crows’ (corvus moneduloides) pandanus tool designs: Diversification or independent invention? The Wilson Journal of Ornithology, 126(1), 133139. https://doi.org/10.1676/13-085.1 Google Scholar
Hull, C. (2020). Prediction signals in the cerebellum: Beyond supervised motor learning. eLife, 9. https://doi.org/10.7554/eLife.54073 Google Scholar
Isaeva, V. V., & Rozhnov, S. V. (2021). Evolutionary transformations of the metazoan body plan: Genomic-morphogenetic correlations. Paleontological Journal, 55(7), 811824. https://doi.org/10.1134/S0031030121070042 Google Scholar
Jackson, R. R., & Cross, F. R. (2011). Spider cognition. In Casas, J. (Ed.), Advances in insect physiology (pp. 115174). Elsevier Science & Technology. https://doi.org/10.1016/B978-0-12-415919-8.00003-3 Google Scholar
Jacobs, L. F. (2012). From chemotaxis to the cognitive map: The function of olfaction. Proceedings of the National Academy of Sciences - PNAS, 109(Supplement 1), 1069310700. https://doi.org/10.1073/pnas.1201880109 Google Scholar
Jacobs, L. F. (2023). The PROUST hypothesis: The embodiment of olfactory cognition. Animal Cognition, 26(1), 5972. https://doi.org/10.1007/s10071-022-01734-1 Google Scholar
Japyassú, H. F., & Laland, K. N. (2017). Extended spider cognition. Animal Cognition, 20(3), 375395. https://doi.org/10.1007/s10071-017-1069-7 Google Scholar
Jékely, G., Godfrey-Smith, P., & Keijzer, F. (2021). Reafference and the origin of the self in early nervous system evolution. Philosophical Transactions of the Royal Society of London. Series B.Biological Sciences, 376(1821), 20190764. https://doi.org/10.1098/rstb.2019.0764 Google Scholar
Jerison, H. J. (1973). Evolution of the brain and intelligence. Acad. Press.Google Scholar
Johnston, J., Seibel, S., Darnet, L. S. A., Renninger, S., Orger, M., & Lagnado, L. (2019). A retinal circuit generating a dynamic predictive code for oriented features. Elsevier. https://doi.org/10.1016/j.neuron.2019.04.002 Google Scholar
Joly, J., Recher, G., Brombin, A., Ngo, K., & Hartenstein, V. (2016). A conserved developmental mechanism builds complex visual systems in insects and vertebrates. Current Biology, 26(20), R1001R1009. https://doi.org/10.1016/j.cub.2016.08.017 Google Scholar
Kaas, J. H., & Balaram, P. (2014). Current research on the organization and function of the visual system in primates. Eye and Brain, 6(Suppl), 14. https://doi.org/10.2147/EB.S64016 Google Scholar
Katsanevakis, S., & Verriopoulos, G. (2004). Den ecology of octopus vulgaris cuvier, 1797, on soft sediment: Availability and types of shelter. Scientia Marina, 68(1), 147157. https://doi.org/10.3989/scimar.2004.68n1147 Google Scholar
Kennedy, E. B. L., Buresch, K. C., Boinapally, P., & Hanlon, R. T. (2020). Octopus arms exhibit exceptional flexibility. Scientific Reports, 10(1), 20872. https://doi.org/10.1038/s41598-020-77873-7 Google Scholar
Kojima, D., Terakita, A., Ishikawa, T., Tsukahara, Y., Maeda, A., & Shichida, Y. (1997). A novel go-mediated phototransduction cascade in scallop visual cells. The Journal of Biological Chemistry, 272(37), 2297922982. https://doi.org/10.1074/jbc.272.37.22979 Google Scholar
Kral, K. (2003). Behavioural–analytical studies of the role of head movements in depth perception in insects, birds and mammals. Behavioural Processes, 64(1), 112. https://doi.org/10.1016/S0376-6357(03)00054-8 Google Scholar
Krapp, H. G. (2014). Flies, optic flow and multisensory stabilization reflexes. In Bleckmann, H., Mogdans, J. & Coombs, S. (Eds.), Flow sensing in air and water (pp. 215243). Springer Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_9 Google Scholar
Kröger, B., Vinther, J., & Fuchs, D. (2011). Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators. BioEssays, 33(8), 602613. https://doi.org/10.1002/bies.201100001 Google Scholar
Lachat, J., & Haag-Wackernagel, D. (2016). Novel mobbing strategies of a fish population against a sessile annelid predator. Scientific Reports, 6(1), 33187. https://doi.org/10.1038/srep33187 Google Scholar
Laland, K., & Seed, A. (2021). Understanding human cognitive uniqueness. Annual Review of Psychology, 72(1), 689716. https://doi.org/10.1146/annurev-psych-062220-051256 Google Scholar
Land, M. F. (1999). Motion and vision: Why animals move their eyes. Journal of Comparative Physiology, 185(4), 341352. https://doi.org/10.1007/s003590050393 Google Scholar
Land, M. F. (2012). The evolution of lenses. Ophthalmic & Physiological Optics, 32, 449460. https://doi.org/10.1111/j.1475-1313.2012.00941.x Google Scholar
Land, M. F., & Nilsson, D. (2012). Animal eyes (2nd. ed.). Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199581139.001.0001 Google Scholar
Land, M. F. (2015). Eye movements of vertebrates and their relation to eye form and function. Journal of Comparative Physiology, 201(2), 195214. https://doi.org/10.1007/s00359-014-0964-5 Google Scholar
Land, M. F. (2019). Eye movements in man and other animals. Vision Research (Oxford), 162, 17. https://doi.org/10.1016/j.visres.2019.06.004 Google Scholar
Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research (Oxford), 41(25), 35593565. https://doi.org/10.1016/S0042-6989(01)00102-X Google Scholar
Lande, R. (1978). Evolutionary mechanisms of limb loss in tetrapods. Evolution, 32(1), 7392. https://doi.org/10.1111/j.1558-5646.1978.tb01099.x Google Scholar
Larouche, O., Zelditch, M. L., & Cloutier, R. (2017). Fin modules: An evolutionary perspective on appendage disparity in basal vertebrates. BMC Biology, 15(1), 32. https://doi.org/10.1186/s12915-017-0370-x Google Scholar
Leise, E. M. (1990). Modular construction of nervous systems: A basic principle of design for invertebrates and vertebrates. Brain Research Reviews, 15(1), 123. https://doi.org/10.1016/0165-0173(90)90009-D Google Scholar
Levitis, D. A., Lidicker, W. Z., & Freund, G. (2009). Behavioural biologists do not agree on what constitutes behaviour. Animal Behaviour, 78(1), 103110. https://doi.org/10.1016/j.anbehav.2009.03.018 Google Scholar
Liebeskind, B. J., Hillis, D. M., Zakon, H. H., & Hofmann, H. A. (2016). Complex homology and the evolution of nervous systems. Trends in Ecology & Evolution (Amsterdam), 31(2), 127135. https://doi.org/10.1016/j.tree.2015.12.005 Google Scholar
Linander, N., Dacke, M., & Baird, E. (2015). Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field. Journal of Experimental Biology, 218(Pt 7), 10511059. https://doi.org/10.1242/jeb.107409 Google Scholar
Llinas, R. R. (2001). I of the vortex (1st edition. ed.). The, MIT Press. https://doi.org/10.7551/mitpress/3626.001.0001 Google Scholar
Loesel, R., Wolf, H., Kenning, M., Harzsch, S., & Sombke, A. (2013). Architectural principles and evolution of the arthropod central nervous system. In Minelli, A., & Giuseppe, G. a. F. Boxshall (Eds.), Arthropod biology and evolution: Molecules, development, morphology (pp. 299342). Springer. https://doi.org/10.1007/978-3-642-36160-9_13 Google Scholar
MacIver, M. A., & Finlay, B. L. (2022). The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philosophical Transactions of the Royal Society of London. Series B.Biological Sciences, 377(1844), 20200523. https://doi.org/10.1098/rstb.2020.0523 Google Scholar
Manuel, M. (2009). Early evolution of symmetry and polarity in metazoan body plans. Comptes Rendus Biologies, 332(2), 184209. https://doi.org/10.1016/j.crvi.2008.07.009 Google Scholar
Marino, L., Connor, R. C., Fordyce, R. E., Herman, L. M., Hof, P. R., Lefebvre, L., Lusseau, D., McCowan, B., Nimchinsky, E. A., Pack, A. A., Rendell, L., Reidenberg, J. S., Reiss, D., Uhen, M. D., Van der Gucht, E., & Whitehead, H. (2007). Cetaceans have complex brains for complex cognition. PLoS Biology, 5(5), e139. https://doi.org/10.1371/journal.pbio.0050139 Google Scholar
Martin, G. R. (2009). What is binocular vision for? A birds’ eye view. Journal of Vision 9(11), 119. https://doi.org/10.1167/9.11.14 Google Scholar
Masland, R. H. (2001). Neuronal diversity in the retina . Elsevier Ltd. https://doi.org/10.1016/S0959-4388(00)00230-0 Google Scholar
Mather, J. A. (1991). Navigation by spatial memory and use of visual landmarks in octopuses. Journal of Comparative Physiology A, 168(4), 491497. https://doi.org/10.1007/BF00199609 Google Scholar
Mather, J. (Ed.). (2021). Cephalopod tool use. Springer International Publishing. https://doi.org/10.1007/978-3-319-19650-3_3173 Google Scholar
Mather, J. A. (2004). Cephalopod skin displays: From concealment to communication. Evolution of Communication Systems, pp. 193213.Google Scholar
Mather, J. A., & Dickel, L. (2017). Cephalopod complex cognition. Current Opinion in Behavioral Sciences, 16, 131137. https://doi.org/10.1016/j.cobeha.2017.06.008 Google Scholar
Mather, J. A., & Alupay, J. S. (2016). An ethogram for benthic octopods (cephalopoda: Octopodidae). Journal of Comparative Psychology (1983), 130(2), 109127. https://doi.org/10.1037/com0000025 Google Scholar
Matsuzawa, T. (2009). The chimpanzee mind: In search of the evolutionary roots of the human mind. Animal Cognition, 12(1), 19. https://doi.org/10.1007/s10071-009-0277-1 Google Scholar
Mauss, A. S., & Borst, A. (2020). Optic flow-based course control in insects. Current Opinion in Neurobiology, 60, 2127. https://doi.org/10.1016/j.conb.2019.10.007 Google Scholar
McCall, C., & Singer, T. (2012). The animal and human neuroendocrinology of social cognition, motivation and behavior. Nature Neuroscience, 15(5), 681688. https://doi.org/10.1038/nn.3084 Google Scholar
McQueen, C., & Towers, M. (2020). Establishing the pattern of the vertebrate limb. Development (Cambridge), 147(17), 114. https://doi.org/10.1242/dev.177956 Google Scholar
Merker, B. (2005). The liabilities of mobility: A selection pressure for the transition to consciousness in animal evolution. Consciousness and Cognition, 14(1), 89114. https://doi.org/10.1016/S1053-8100(03)00002-3 Google Scholar
Merz, R. A., & Edwards, D. R. (1998). Jointed setae – their role in locomotion and gait transitions in polychaete worms. Journal of Experimental Marine Biology and Ecology, 228(2), 273290. https://doi.org/10.1016/S0022-0981(98)00034-3 Google Scholar
Milner, A. D., & Goodale, M. A. (2006). The visual brain in action (2nd ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198524724.001.0001 Google Scholar
Minelli, A. (2015). EvoDevo and its significance for animal evolution and phylogeny. In Wanninger, A. (Ed.), Evolutionary developmental biology of invertebrates 1: Introduction, non-bilateria, acoelomorpha, xenoturbellida, chaetognatha (pp. 123). Springer.Google Scholar
Mischiati, M., Lin, H., Herold, P., Imler, E., Olberg, R., & Leonardo, A. (2015). Internal models direct dragonfly interception steering. Nature (London), 517(7534), 333338. https://doi.org/10.1038/nature14045 Google Scholar
Montgomery, J., & Bodznick, D. (2016). Evolution of the cerebellar sense of self (first edition ed.). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198758860.001.0001 Google Scholar
Morgan, C. L. (1882). Animal intelligence. Nature, 26(674), 523524.Google Scholar
Moroz, L. L. (2009). On the independent origins of complex brains and neurons. Brain, Behavior and Evolution, 74(3), 177190. https://doi.org/10.1159/000258665 Google Scholar
Moroz, L. L. (2015). Convergent evolution of neural systems in ctenophores. Journal of Experimental Biology, 218(Pt 4), 598. https://doi.org/10.1242/jeb.110692 Google Scholar
Nakanishi, N., Hartenstein, V., & Jacobs, D. K. (2009). Development of the rhopalial nervous system in aurelia sp.1 (cnidaria, scyphozoa). Development Genes and Evolution, 219(6), 301317. https://doi.org/10.1007/s00427-009-0291-y Google Scholar
Nelson, M. E., & MacIver, M. A. (2006). Sensory acquisition in active sensing systems. Journal of Comparative Physiology, 192(6), 573586. https://doi.org/10.1007/s00359-006-0099-4 Google Scholar
Nielsen, C. (2008). Six major steps in animal evolution: Are we derived sponge larvae. Evolution & Development, 10(2), 241257. https://doi.org/10.1111/j.1525-142X.2008.00231.x Google Scholar
Nielsen, C. (2019). Early animal evolution: A morphologist’s view. Royal Society Open Science, 6(7), 190638. https://doi.org/10.1098/rsos.190638 Google Scholar
Nilsson, D. (2013). Eye evolution and its functional basis. Visual Neuroscience, 30(1-2), 520. https://doi.org/10.1017/S0952523813000035 Google Scholar
Nilsson, D. (2009). The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1531), 28332847. https://doi.org/10.1098/rstb.2009.0083 Google Scholar
Nilsson, D. (2022). The evolution of visual roles – ancient vision versus object vision. Frontiers in Neuroanatomy, 16, 789375. https://doi.org/10.3389/fnana.2022.789375 Google Scholar
Nyakatura, J. A., & Andrada, E. (2014). On vision in birds: Coordination of head-bobbing and gait stabilises vertical head position in quail. Frontiers in Zoology, 11(1), 27. https://doi.org/10.1186/1742-9994-11-27 Google Scholar
Olberg, R. M., Seaman, R. C., Coats, M. I., & Henry, A. F. (2007). Eye movements and target fixation during dragonfly prey-interception flights. Journal of Comparative Physiology, 193(7), 685693. https://doi.org/10.1007/s00359-007-0223-0 Google Scholar
Ortega-Hernández, J. (2015). Lobopodians. Current Biology, 25(19), R873R875. https://doi.org/10.1016/j.cub.2015.07.028 Google Scholar
Panganiban, G., Irvine, S. M., Lowe, C., Roehl, H., Corley, L. S., Sherbon, B., Grenier, J. K., Fallon, J. F., Kimble, J., Walker, M., Wray, G. A., Swalla, B. J., Martindale, M. Q., & Carroll, S. B. (1997). The origin and evolution of animal appendages. Proceedings of the National Academy of Sciences - PNAS, 94(10), 51625166. https://doi.org/10.1073/pnas.94.10.5162 Google Scholar
Parker, A. (2003). In the blink of an eye: The cause of the most dramatic event in the history of life. Free Press, London.Google Scholar
Parry, L., & Caron, J. (2019). Canadia spinosa and the early evolution of the annelid nervous system. Science Advances, 5(9), eaax5858. https://doi.org/10.1126/sciadv.aax5858 Google Scholar
Paterson, J. R., Garcia-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., & Edgecombe, G. D. (2011). Acute vision in the giant cambrian predator anomalocaris and the origin of compound eyes. Nature (London), 480(7376), 237240. https://doi.org/10.1038/nature10689 Google Scholar
Patton, P. (2008). One world, many minds. Scientific American Mind, 19(6), 79. https://doi.org/10.1038/scientificamericanmind1208-72 Google Scholar
Pepperberg, I. M. (2005). An avian perspective on language evolution: Implications of simultaneous development of vocal and physical object combinations by a grey parrot (psittacus erithacus). In Tallerman, M. (Ed.), Language Origins: Perspectives on Evolution, p. 239. Oxford University Press.Google Scholar
Perry, C. J., & Barron, A. B. (2013). Neural mechanisms of reward in insects. Annual Review of Entomology, 58(1), 543562. https://doi.org/10.1146/annurev-ento-120811-153631 Google Scholar
Perry, C. J., & Baciadonna, L. (2017). Studying emotion in invertebrates: What has been done, what can be measured and what they can provide. Journal of Experimental Biology, 220(Pt 21), 38563868. https://doi.org/10.1242/jeb.151308 Google Scholar
Perry, C. J., Barron, A. B., & Chittka, L. (2017). The frontiers of insect cognition. Current Opinion in Behavioral Sciences, 16, 111118. https://doi.org/10.1016/j.cobeha.2017.05.011 Google Scholar
Pfeffer, S., & Wolf, H. (2020). Arthropod spatial cognition. Animal Cognition, 23(6), 10411049. https://doi.org/10.1007/s10071-020-01446-4 Google Scholar
Pfeifer, R., Iida, F., & Lungarella, M. (2014). Cognition from the bottom up: On biological inspiration, body morphology, and soft materials. Trends in Cognitive Sciences, 18(8), 404413. https://doi.org/10.1016/j.tics.2014.04.004 Google Scholar
Pisani, D., Pett, W., Dohrmann, M., Feuda, R., Rota-Stabelli, O., Philippe, H., Lartillot, N., & Wörheide, G. (2015). Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of the National Academy of Sciences - PNAS, 112(50), 1540215407. https://doi.org/10.1073/pnas.1518127112 Google Scholar
Pohle, A., Kröger, B., Warnock, R. C. M., King, A. H., Evans, D. H., Aubrechtová, M., Cichowolski, M., Fang, X., & Klug, C. (2022). Early cephalopod evolution clarified through bayesian phylogenetic inference. BMC Biology, 20(1), 88. https://doi.org/10.1186/s12915-022-01284-5 Google Scholar
Porcelli, A. J., & Delgado, M. R. (2017). Stress and decision making: Effects on valuation, learning, and risk-taking. Current Opinion in Behavioral Sciences, 14, 3339. https://doi.org/10.1016/j.cobeha.2016.11.015 Google Scholar
Porcelli, A. J., Lewis, A. H., & Delgado, M. R. (2012). Acute stress influences neural circuits of reward processing. Frontiers in Neuroscience, 6, 33832.Google Scholar
Polet, D. T., & Bertram, J. E. A. (2021). Arboreal locomotion: Moving in the trees. eLS, 2, 17. https://doi.org/10.1002/9780470015902.a0029353 Google Scholar
Pueyo, J. I., & Couso, J. P. (2005). Parallels between the proximal–distal development of vertebrate and arthropod appendages: Homology without an ancestor? Current Opinion in Genetics & Development, 15(4), 439446. https://doi.org/10.1016/j.gde.2005.06.007 Google Scholar
Pungor, J. R., & Niell, C. M. (2023). The neural basis of visual processing and behavior in cephalopods. Current Biology, 33(20), R1106R1118. https://doi.org/10.1016/j.cub.2023.08.093 Google Scholar
Raby, C. R., Alexis, D. M., Clayton, N. S., & Dickinson, A. (2007). Planning for the future by western scrub-jays. Nature, 445(7130), 919921. https://doi.org/10.1038/nature05575 Google Scholar
Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10(10), 724735. https://doi.org/10.1038/nrn2719 Google Scholar
Randel, N., & Jékely, G. (2016). Phototaxis and the origin of visual eyes. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 371(1685), 20150042. https://doi.org/10.1098/rstb.2015.0042 Google Scholar
Redl, E., Scherholz, M., Wollesen, T., Todt, C., & Wanninger, A. (2016). Cell proliferation pattern and twist expression in an aplacophoran mollusk argue against segmented ancestry of mollusca. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 326(7), 422436. https://doi.org/10.1002/jez.b.22714 Google Scholar
Reznikova, Z. I. (2007). Animal intelligence: From individual to social cognition. Cambridge University Press.Google Scholar
Riley, J. R., Greggers, U., Smith, A. D., Reynolds, D. R., & Menzel, R. (2005). Flight paths of honeybees recruited by the waggle dance. Nature, 435(7039), 205207. https://doi.org/10.1038/nature03526 Google Scholar
Rinnert, P., Kirschhock, M. E., & Nieder, A. (2019). Neuronal correlates of spatial working memory in the endbrain of crows. Current Biology, 29(16), 26162624.e4. https://doi.org/10.1016/j.cub.2019.06.060 Google Scholar
Roth, G. (2015). Convergent evolution of complex brains and high intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1684), 20150049. https://doi.org/10.1098/rstb.2015.0049 Google Scholar
Rubinson, K. (1990). The developing visual system and metamorphosis in the lamprey. Journal of Neurobiology, 21(7), 11231135. https://doi.org/10.1002/neu.480210715 Google Scholar
Sanes, J. R., & Zipursky, S. L. (2010). Design principles of insect and vertebrate visual systems. Neuron (Cambridge, Mass.), 66(1), 1536. https://doi.org/10.1016/j.neuron.2010.01.018 Google Scholar
Sayol, F., Collado, M. Á, Garcia-Porta, J., Seid, M. A., Gibbs, J., Agorreta, A., San Mauro, D., Raemakers, I., Sol, D., & Bartomeus, I. (2020). Feeding specialization and longer generation time are associated with relatively larger brains in bees. Proceedings of the Royal Society B, 287(1935), 20200762. https://doi.org/10.1098/rspb.2020.0762 Google Scholar
Scaros, A. T., Croll, R. P., & Baratte, S. (2018). Immunohistochemical approach to understanding the organization of the olfactory system in the cuttlefish, sepia officinalis . ACS Chemical Neuroscience, 9(8), 20742088. https://doi.org/10.1021/acschemneuro.8b00021 Google Scholar
Schroeder, C. E., Wilson, D. A., Radman, T., Scharfman, H., & Lakatos, P. (2010). Dynamics of active sensing and perceptual selection. Current Opinion in Neurobiology, 20(2), 172176. https://doi.org/10.1016/j.conb.2010.02.010 Google Scholar
Seed, A., & Mayer, C. (2017). Problem solving. In Call, J. G., Burghardt, I. M., Pepperberg, M., Snowdon, T. & Zentall, T. (Eds.), APA handbook of comparative psychology: Perception, learning, and cognition (p. 601625). American Psychological Association. https://doi.org/10.1037/0000012-027 Google Scholar
Seipel, K., & Schmid, V. (2005). Evolution of striated muscle: Jellyfish and the origin of triploblasty. Developmental Biology, 282(1), 1426. https://doi.org/10.1016/j.ydbio.2005.03.032 Google Scholar
Shigeno, S., Sasaki, T., Moritaki, T., Kasugai, T., Vecchione, M., & Agata, K. (2008). Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: Evidence from nautilus embryonic development. Journal of Morphology (1931), 269(1), 117. https://doi.org/10.1002/jmor.10564 Google Scholar
Shih, C., Sporns, O., Yuan, S., Su, T., Lin, Y., Chuang, C., Wang, T., Lo, C., Greenspan, R. J., & Chiang, A. (2015). Connectomics-based analysis of information flow in the drosophila brain. Current Biology, 25(10), 12491258. https://doi.org/10.1016/j.cub.2015.03.021 Google Scholar
Shixue, H., Steiner, M., Maoyan, Z., Erdtmann, B., Huilin, L., Liangzhong, C., & Weber, B. (2007). Diverse pelagic predators from the chengjiang lagerstatte and the establishment of modern-style pelagic ecosystems in the early cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2), 307316. https://doi.org/10.1016/j.palaeo.2007.03.044 Google Scholar
Shubin, N. H., Daeschler, E. B., & Jenkins, F. A. (2006). The pectoral fin of tiktaalik roseae and the origin of the tetrapod limb. Nature, 440(7085), 764771. https://doi.org/10.1038/nature04637;Received11October2005;Accepted8February2006 Google Scholar
Shubin, N. H., Tabin, C., & Carroll, S. (1997). Fossils, genes and the evolution of animal limbs. Nature (London), 388(6643), 639648. https://doi.org/10.1038/41710 Google Scholar
Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature (London), 457(7231), 818823. https://doi.org/10.1038/nature07891 Google Scholar
Smith, F. W., Boothby, T. C., Giovannini, I., Rebecchi, L., Jockusch, E. L., & Goldstein, B. (2016). The compact body plan of tardigrades evolved by the loss of a large body region. Current Biology, 26(2), 224229. https://doi.org/10.1016/j.cub.2015.11.059 Google Scholar
Smith, M. P., & Harper, D. A. T. (2013). Causes of the cambrian explosion. Science (American Association for the Advancement of Science), 341(6152), 13551356. https://doi.org/10.1126/science.1239450 Google Scholar
Smith, M. R. (2013). Nectocaridid ecology, diversity, and affinity: Early origin of a cephalopod-like body plan. Paleobiology, 39(2), 297321. https://doi.org/10.1666/12029 Google Scholar
Smith, M. R. (2020). An ordovician nectocaridid hints at an endocochleate origin of cephalopoda. Journal of Paleontology, 94(1), 6469. https://doi.org/10.1017/jpa.2019.57 Google Scholar
Smith, M. R., & Ortega-Hernández, J. (2014). Hallucigenia’s onychophoran-like claws and the case for tactopoda. Nature (London), 514(7522), 363366. https://doi.org/10.1038/nature13576 Google Scholar
Snyder, J. B., Nelson, M. E., Burdick, J. W., & Maciver, M. A. (2007). Omnidirectional sensory and motor volumes in electric fish. PLoS Biology, 5(11), e301. https://doi.org/10.1371/journal.pbio.0050301 Google Scholar
Sommer, R. J. (2015). Nematoda. In Wanninger, A. (Ed.), Evolutionary developmental biology of invertebrates 3: Ecdysozoa I: Non-tetraconata (pp. 1533). Springer.Google Scholar
Spencer, K. A. (2017). Developmental stress and social phenotypes: Integrating neuroendocrine, behavioural and evolutionary perspectives. Philosophical Transactions - Royal Society. Biological Sciences, 372(1727), 20160242. https://doi.org/10.1098/rstb.2016.0242 Google Scholar
Srinivasan, M. V., Lehrer, M., Kirchner, W. H., & Zhang, S. W. (1991). Range perception through apparent image speed in freely flying honeybees. Visual Neuroscience, 6(5), 519535. https://doi.org/10.1017/S095252380000136X Google Scholar
Srinivasan, M., Zhang, S., Lehrer, M., & Collett, T. (1996). Honeybee navigation en route to the goal: Visual flight control and odometry. Journal of Experimental Biology, 199(Pt 1), 237. https://doi.org/10.1242/jeb.199.1.237 Google Scholar
Srinivasan, M. V. (1992). How bees exploit optic flow: Behavioural experiments and neural models. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 337(1281), 253259. https://doi.org/10.1098/rstb.1992.0103 Google Scholar
Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B, Biological Sciences, 216(1205), 427459. https://doi.org/10.1098/rspb.1982.0085 Google Scholar
Stamper, S. A., Madhav, M. S., Cowan, N. J., & Fortune, E. S. (2019). Using control theory to characterize active sensing in weakly electric fishes. In Carlson, B., Sisneros, J. A., Popper, A. N. & Fay, R. R. (Eds.), Electroreception: Fundamental insights from comparative approaches (pp. 227249). Springer. https://doi.org/10.1007/978-3-030-29105-1_8 Google Scholar
Steinmetz, P. R. H., Kraus, J. E. M., Larroux, C., Hammel, J. U., Amon-Hassenzhal, A., Houlistone, E., Wordheid, G., Nickel, M., Degan, B. M., & Technau, U. (2012). Independent evolution of striated muscles in cnidarians and bilaterians. Nature (London), 487(7406), 231234. https://doi.org/10.1038/nature11180 Google Scholar
Stewart, T. A., Bonilla, M. M., Ho, R. K., & Hale, M. E. (2019). Adipose fin development and its relation to the evolutionary origins of median fins. Scientific Reports, 9(1), 512. https://doi.org/10.1038/s41598-018-37040-5 Google Scholar
Strausfeld, N. J., & Hirth, F. (2013). Deep homology of arthropod central complex and vertebrate basal ganglia. Science (American Association for the Advancement of Science), 340(6129), 157161. https://doi.org/10.1126/science.1231828 Google Scholar
Strausfeld, N. J., Ma, X., Edgecombe, G. D., Fortey, R. A., Land, M. F., Liu, Y., Cong, P., & Hou, X. (2016). Arthropod eyes: The early cambrian fossil record and divergent evolution of visual systems. Arthropod Structure & Development, 45(2), 152172. https://doi.org/10.1016/j.asd.2015.07.005 Google Scholar
Suanda, S. H., Barnhart, M., Smith, L. B., & Yu, C. (2019). The signal in the noise: The visual ecology of parents’ object naming. Infancy, 24(3), 455476. https://doi.org/10.1111/infa.12278 Google Scholar
Sumner-Rooney, L. (2018). The kingdom of the blind. Integrative and Comparative Biology, 58(3), 372385. https://doi.org/10.1093/icb/icy047 Google Scholar
Suzuki, D. G., & Grillner, S. (2018). The stepwise development of the lamprey visual system and its evolutionary implications. Biological Reviews of the Cambridge Philosophical Society, 93(3), 14611477. https://doi.org/10.1111/brv.12403 Google Scholar
Tarazona, O. A., Lopez, D. H., Slota, L. A., & Cohn, M. J. (2019). Evolution of limb development in cephalopod mollusks. eLife, 8, 119. https://doi.org/10.7554/eLife.43828 Google Scholar
Thorndike, E. (1898). Some experiments on animal intelligence. Science (American Association for the Advancement of Science), 7(181), 818824. https://doi.org/10.1126/science.7.181.818 Google Scholar
Tomer, R., Denes, A. S., Tessmar-Raible, K., & Arendt, D. (2010). Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell, 142(5), 800809. https://doi.org/10.1016/j.cell.2010.07.043 Google Scholar
Tosches, M. A., & Arendt, D. (2013). The bilaterian forebrain: An evolutionary chimaera. Current Opinion in Neurobiology, 23(6), 10801089. https://doi.org/10.1016/j.conb.2013.09.005 Google Scholar
Trestman, M. (2013). The cambrian explosion and the origins of embodied cognition. Biological Theory, 8, 8092. https://doi.org/10.1007/s13752-013-0102-6 Google Scholar
Trestman, M. (2018). Minds and bodies in animal evolution. In Andrews, K. and Beck, J. (Eds.), The Routledge handbook of philosophy of animal minds (1st ed., pp. 206215). Routledge. https://doi.org/10.4324/9781315742250-20 Google Scholar
Trestman, M. (2023). Energy and expectation: The dynamics of living consciousness. Biosemiotics, 16(2), 269279. https://doi.org/10.1007/s12304-023-09529-8 Google Scholar
Uomini, N., Fairlie, J., Gray, R. D., & Griesser, M. (2020). Extended parenting and the evolution of cognition. Philosophical Transactions of the Royal Society of London. Series B.Biological Sciences, 375(1803), 20190495. https://doi.org/10.1098/rstb.2019.0495 Google Scholar
Vallortigara, G. (2021). The efference copy signal as a key mechanism for consciousness. Frontiers in Systems Neuroscience, 15, 765646. https://doi.org/10.3389/fnsys.2021.765646 Google Scholar
Vannier, J., Garcia-Bellido, D. C., Hu, S. X., & Chen, A. L. (2009). Arthropod visual predators in the early pelagic ecosystem; evidence from the burgess shale and chengjiang biotas. Proceedings of the Royal Society.B, Biological Sciences, 276(1667), 25672574. https://doi.org/10.1098/rspb.2009.0361 Google Scholar
Varela, F. J., Thompson, E., & Rosch, E. (2018). The embodied mind: Cognitive science and human experience (Revis; Revis; 2nd ed.). MIT Press. https://doi.org/10.7551/mitpress/9739.001.0001 Google Scholar
Visalberghi, E., Sabbatini, G., Taylor, A. H., & Hunt, G. R. (2017). Cognitive insights from tool use in nonhuman animals. In Casas, J. (Ed.), APA handbook of comparative psychology: Perception, learning, and cognition (pp. 673701). American Psychological Association. https://doi.org/10.1037/0000012-030 Google Scholar
von Frisch, K., & Lindauer, M. (1956). The “language” and orientation of the honey bee. Annual Review of Entomology, 1(1), 4558.Google Scholar
von Holst, E., & Mittelstaedt, H. (1950). Das reafferenzprinzip: Wechselwirkungen zwischen zentralnervensystem und peripherie. Die Naturwissenschaften, 37(20), 464476. https://doi.org/10.1007/BF00622503 Google Scholar
Vopalensky, P., & Kozmik, Z. (2009). Eye evolution: Common use and independent recruitment of genetic components. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1531), 28192832. https://doi.org/10.1098/rstb.2009.0079 Google Scholar
Walls, G. L. (1962). The evolutionary history of eye movements. Vision Research (Oxford), 2(1), 6980. https://doi.org/10.1016/0042-6989(62)90064-0 Google Scholar
Wassle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews. Neuroscience, 5(10), 747757. https://doi.org/10.1038/nrn1497 Google Scholar
Weigert, A., & Bleidorn, C. (2016). Current status of annelid phylogeny. Organisms Diversity & Evolution, 16(2), 345362. https://doi.org/10.1007/s13127-016-0265-7 Google Scholar
Wiederman, S. D., Fabian, J. M., Dunbier, J. R., & O’Carroll, D. C. (2017). A predictive focus of gain modulation encodes target trajectories in insect vision. eLife, 6, 119. https://doi.org/10.7554/eLife.26478 Google Scholar
Windsor, S. P. (2013). Hydrodynamic imaging by blind cavefish. In Bleckmann, H., Mogdans, J. & Coombs, S. (Eds.), Flow sensing in air and water (pp. 103125). Springer.Google Scholar
Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews. Neuroscience, 5(6), 483494. https://doi.org/10.1038/nrn1406 Google Scholar
Wolf, R., & Heisenberg, M. (1991). Basic organization of operant behavior as revealed in drosophila flight orientation. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, 169(6), 699705. https://doi.org/10.1007/BF00194898 Google Scholar
Wolff, G. H., & Strausfeld, N. J. (2015). Genealogical correspondence of mushroom bodies across invertebrate phyla. Current Biology, 25(1), 3844. https://doi.org/10.1016/j.cub.2014.10.049 Google Scholar
Xiaoya, M., Xianguang, H., Edgecombe, G. D., & Stausfeld, N. J. (2012). Complex brain and optic lobes in an early cambrian arthropod. Nature (London), 490(7419), 258261. https://doi.org/10.1038/nature11495 Google Scholar
Young, J. Z. (1971). Anatomy of the nervous system of octopus vulgaris. Clarendon Press.Google Scholar
Yu, C., & Smith, L. B. (2012). Embodied attention and word learning by toddlers. Cognition, 125(2), 244262. https://doi.org/10.1016/j.cognition.2012.06.016 Google Scholar
Zeil, J., Boeddeker, N., & Hemmi, J. M. (2008). Vision and the organization of behaviour. Current Biology, 18(8), R320R323. https://doi.org/10.1016/j.cub.2008.02.017 Google Scholar
Zeller, R. (2010). The temporal dynamics of vertebrate limb development, teratogenesis and evolution. Current Opinion in Genetics & Development, 20(4), 384390. https://doi.org/10.1016/j.gde.2010.04.014 Google Scholar
Zentall, T. R. (2020). Animal intelligence. In Sternberg, R. (Ed.), The Cambridge Handbook of Intelligence. Cambridge Handbooks in Psychology (pp. 387427). Cambridge University Press. https://doi.org/10.1017/9781108770422.018 Google Scholar
Zhikun, G., Qiang, L., Ferron, H. G., Keating, J. N., Junqing, W., Donoghue, P. C. J., & Min, Z. (2022). Galeaspid anatomy and the origin of vertebrate paired appendages. Nature (London), 609(7929), 959963. https://doi.org/10.1038/s41586-022-04897-6.Google Scholar
Supplementary material: File

Coombs and Trestman supplementary material

Coombs and Trestman supplementary material
Download Coombs and Trestman supplementary material(File)
File 1.7 MB