Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-09-01T14:49:03.110Z Has data issue: false hasContentIssue false

Quantifying human-centric uncertainty in aircraft maintenance

Published online by Cambridge University Press:  29 August 2025

D. Yiannakides*
Affiliation:
School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
D. Drikakis
Affiliation:
School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
C. Sergiou
Affiliation:
Department of Computer Science and Engineering, European University Cyprus, Nicosia, Cyprus
*
Corresponding author: D. Yiannakides; Email: yiannakides@gmail.com

Abstract

Human-centric uncertainty remains one of the most persistent yet least quantified sources of risk in aviation maintenance. Although established safety frameworks such as SMS (safety management system), STAMP (Systems-Theoretic Accident Model and Processes), and FRAM (Functional Resonance Analysis Method) have advanced systemic oversight, they fall short in capturing the dynamic, context-dependent variability of human performance in real time. This study introduces the uncertainty quantification in aircraft maintenance (UQAM) framework – a novel, predictive safety tool designed to measure and manage operational uncertainty at the task level. The integrated uncertainty equation (IUE) is central to the model, a mathematical formulation that synthesises eight empirically derived uncertainty factors into a single, actionable score. Using a mixed-methods design, the research draws on thematic analysis of 49 semi-structured interviews with licensed maintenance engineers, followed by a 12-month field validation across four distinct maintenance tasks. Results demonstrate that the IUE effectively distinguishes between low, moderate and high-risk scenarios while remaining sensitive to procedural anomalies, diagnostic ambiguity and environmental complexity. Heatmap visualisations further enable supervisory teams to identify dominant uncertainty drivers and implement targeted interventions. UQAM enhances predictive governance, supports real-time decision-making and advances the evolution of next-generation safety systems in high-reliability aviation environments by embedding quantitative uncertainty metrics into existing safety architectures.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdi, Z., Ravaghi, H., Abbasi, M., Delgoshaei, B. and Esfandiari, S. Application of bow-tie methodology to improve patient safety, Int. J. Health Care Qual. Assur., 2016, 29, (4), pp 425440. https://www.emerald.com/insight/content/doi/10.1108/IJHCQA-10-2015-0121/full/html CrossRefGoogle ScholarPubMed
Aktas, E. and Kagnicioglu, C.H. Factors affecting safety behaviors of aircraft maintenance technicians: a study on civil aviation industry in Turkey, Safety Science, 2023, 164, p 106146. ISSN 0925-7535. https://www.sciencedirect.com/science/article/pii/S0925753523000887 10.1016/j.ssci.2023.106146CrossRefGoogle Scholar
Allison, C.K., Revell, K.M., Sears, R. and Stanton, N.A. Systems theoretic accident model and process (stamp) safety modelling applied to an aircraft rapid decompression event, Safety Sci., 2017, 98, pp 159166.10.1016/j.ssci.2017.06.011CrossRefGoogle Scholar
Aust, J. and Pons, D. Bowtie methodology for risk analysis of visual borescope inspection during aircraft engine maintenance, Aerospace, 2019, 6, (10), p 15.10.3390/aerospace6100110CrossRefGoogle Scholar
Aust, J. and Pons, D. A systematic methodology for developing bowtie in risk assessment: application to borescope inspection, Aerospace, 2020, 7, (7), p 86. https://doaj.org/article/25e5abe2d8ce4390882512c5885ee2bc 10.3390/aerospace7070086CrossRefGoogle Scholar
Barmparousis, C. and Drikakis, D. Multidimensional quantification of uncertainty and application to a turbulent mixing model, Int. J. Numer. Methods Fluids, 2017, 85, (7), pp 385403. https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4385 CrossRefGoogle Scholar
Belton, V. and Stewart, T.J. Multiple Criteria Decision Analysis, Springer, 2002, Boston, MA. ISBN 9781461355823.10.1007/978-1-4615-1495-4CrossRefGoogle Scholar
Bendak, S. and Rashid, H.S.J. Fatigue in aviation: a systematic review of the literature, Int. J. Ind. Ergon., 2020, 76, p 102928. https://doi.org/10.1016/j.ergon.2020.102928 CrossRefGoogle Scholar
Bird, E.F. Management guide to loss control, 1974. http://historicalpapers-atom.wits.ac.za/ Google Scholar
Bjerga, T., Aven, T. and Zio, E. Uncertainty treatment in risk analysis of complex systems: the cases of stamp and fram, Reliab. Eng. Syst. Safety, 2016, 156, pp 203209.10.1016/j.ress.2016.08.004CrossRefGoogle Scholar
Bohrey, O.P. and Chatpalliwar, A.S. Mitigation of human factors in aviation maintenance, Theoret. Issues Ergon. Sci., 2024, 25, (5), pp 642654.10.1080/1463922X.2024.2321446CrossRefGoogle Scholar
Bohrey, O.P. and Chatpalliwar, A.S. Modelling of human factors in aviation maintenance using hfacs me human factors analysis and classification system maintenance extension and bayesian network, Def. Sci. J., 2024b, 74, (5), pp 603614.10.14429/dsj.74.19828CrossRefGoogle Scholar
Booth, A., Sutton, A. and Papaioannou, D. Systematic Approaches to a Successful Literature Review, SAGE Publications Ltd., 2012, Thousand Oaks, CA. ISBN 9780857021359.Google Scholar
Boustras, G. The Interface of Safety and Security; The Workplace. Springer Briefs in Applied Sciences and Technology, Springer International Publishing AG, 2020, Cham, pp 97104. ISBN 9783030472283. https://ebookcentral.proquest.com/lib/[SITE_ID./detail.action?docID=6420138 Google Scholar
Braun, V. and Clarke, V. Using thematic analysis in psychology, Qual. Res. Psychol., 2006, 3(2), pp 77101. https://uwe-repository.worktribe.com/output/1043060 10.1191/1478088706qp063oaCrossRefGoogle Scholar
Chatzi, A. The diagnosis of communication and trust in aviation maintenance (dictam) model, Aerospace, 2019, 6, (11), p 120. doi: 10.3390/aerospace6110120. https://search.proquest.com/docview/2545564469 CrossRefGoogle Scholar
Christakis, N. and Drikakis, D. Reducing uncertainty and increasing confidence in unsupervised learning, Mathematics, 2023, 11, (14). ISSN 2227-7390. https://www.mdpi.com/2227-7390/11/14/3063 10.3390/math11143063CrossRefGoogle Scholar
Clare, J. and Kourousis, K.I. Learning from incidents in aircraft maintenance and continuing airworthiness management: a systematic review, J. Adv. Transp., 2021, pp 113. http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,ssodb=asnN=148946750site=eds-livecustid=s1098328 10.1155/2021/8852932CrossRefGoogle Scholar
Claros, B., Sun, C. and Edara, P. Enhancing safety risk management with quantitative measures, Transp. Res. Rec., 2017, 2603, (1), pp 112. https://journals.sagepub.com/doi/full/10.3141/2603-01 CrossRefGoogle Scholar
Creswell, J.W. Qualitative Inquiry and Research Design: choosing Among Five Approaches, 3rd ed., SAGE, 2013, Los Angeles, CA. ISBN 1412995302. https://search.proquest.com/docview/1095629300 Google Scholar
da Silva, J.C., Barqueira, A., Magalhães, L.B. and Santos, L.F.F.M. Human fatigue in the aircraft maintenance environment, Safety Sci., 2024, 180, p 106634. ISSN 0925-7535. https://www.sciencedirect.com/science/article/pii/S0925753524002248 10.1016/j.ssci.2024.106634CrossRefGoogle Scholar
Dalkilic, S. Improving aircraft safety and reliability by aircraft maintenance technician training, Eng. Failure Anal., 2017, 82, pp 687694. https://doi.org/10.1016/j.engfailanal.2017.06.008 CrossRefGoogle Scholar
Dekker, S. and Pruchnicki, S. Drifting into failure: theorising the dynamics of disaster incubation, Theoret. Issues Ergon. Sci., 2014, 15, (6), pp 534544. https://doi.org/10.1080/1463922X.2013.856495 CrossRefGoogle Scholar
Delatour, G. Système de gestion de la sécurité: Quel modèle canonique pour la maitrise des risques industriels? Assurances et Gestion des Risques, 2015, 82, (1/2), pp 2547. http://www.econis.eu/PPNSET?PPN=858194252 10.7202/1091598arCrossRefGoogle Scholar
Diller, T.W., Helmrich, G., Dunning, S., Cox, S., Buchanan, A. and Shappell, S. The human factors analysis classification system (hfacs) applied to health care, Am. J. Med. Qual., 2014, 29, (3), pp 181190.10.1177/1062860613491623CrossRefGoogle ScholarPubMed
Dinis, D. Maintenance management: a review on problems and solutions, Procedia Computer Science, 2025, 253, pp 30693077.10.1016/j.procs.2025.02.031CrossRefGoogle Scholar
Drikakis, D. and Asproulis, N. Quantification of computational uncertainty for molecular and continuum methods in thermo-fluid sciences, Appl. Mech. Rev., 2012, 64, (4), p 040801. ISSN 0003-6900. https://doi.org/10.1115/1.4006213 CrossRefGoogle Scholar
Scott Dunlap, E., Basford, B. and Smith, M. Remodeling heinrich: An application for modern safety management, Prof. Safety, 2019, 64, (05), pp 4452. www.bls.gov/iif/oshsum.htm Google Scholar
Ergai, A., Cohen, T., Sharp, J., Wiegmann, D., Gramopadhye, A. and Shappell, S. Assessment of the human factors analysis and classification system (hfacs): Intra-rater and inter-rater reliability, Safety Sci., 2016, 82, pp 393398. https://doi.org/10.1016/j.ssci.2015.09.028 CrossRefGoogle Scholar
FAA. National policy-safety management system. order 8000.369c. Technical Report 20, FAA, 2020.Google Scholar
Geibel, W.D., Von Thaden, T.L. and Suzuki, T. Issues that precipitate errors in airline maintenance, Proc. Hum. Factors Ergon. Soc., 2008, (1), pp 9498.Google Scholar
Gerede, E. A study of challenges to the success of the safety management system in aircraft maintenance organizations in Turkey, Safety Sci., 2015, 73, pp 106116. https://doi.org/10.1016/j.ssci.2014.11.013 CrossRefGoogle Scholar
Gerede, E. and Kurt, Y. An assessment of aviation safety management system applications from the institutional theory perspective, Int. J. Manag. Econ. Bus., 2018, 14, (1), pp 97121. https://search.proquest.com/docview/2041126716 Google Scholar
Goncharenko, A. Aircraft operation depending upon the uncertainty of maintenance alternatives, Aviation, 2017, 21, (4), pp 126131. https://www.tandfonline.com/doi/abs/10.3846/16487788.2017.1415227 CrossRefGoogle Scholar
Grant, M.J. and Booth, A. A typology of reviews: an analysis of 14 review types and associated methodologies, Health Inf. Lib. J., 2009, 26, (2), pp 91108. http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,ssodb=mdcAN=19490148site=eds-livecustid=s1098328 10.1111/j.1471-1842.2009.00848.xCrossRefGoogle ScholarPubMed
Grattan, D.(D)J. Improving barrier effectiveness using human factors methods, J. Loss Prev. Process Ind., 2018, 55, pp 400410. https://doi.org/10.1016/j.jlp.2018.07.016 CrossRefGoogle Scholar
Gursel, E., Madadi, M., Coble, B., Agarwal, V., Yadav, V., Boring, R.L. and Khojandi, A. The role of ai in detecting and mitigating human errors in safety-critical industries: a review, Reliab. Eng. Syst. Safety, 2025, 256, p 110682. ISSN 0951-8320. URL https://www.sciencedirect.com/science/article/pii/S0951832024007531 10.1016/j.ress.2024.110682CrossRefGoogle Scholar
Heinrich, H.W. Industrial Accident Prevention: A Scientific Approach, McGraw-Hill book Company, Incorporated, 1931, CA, 1941. https://search.proquest.com/docview/58528347 Google Scholar
Hollnagel, E. Position paper on human error, NATO Conference on Human Error, vol. 1, 1983. https://erikhollnagel.com/onewebmedia/URTEXTonHE.pdf Google Scholar
Hollnagel, E. Barriers and Accident Prevention, 1st ed., Routledge, 2004, UK. ISBN 9781351955942. doi: 10.4324/9781315261737. http://digital.casalini.it/9781351955942 Google Scholar
Hollnagel, E. Risk + barriers = safety? Safety Sci., 2008, 46, (2), pp 221229. https://doi.org/10.1016/j.ssci.2007.06.028 CrossRefGoogle Scholar
Hollnagel, E. Safety-I and Safety-II: The Past and Future of Safety Management, Ashgate Publishing, Ltd, 2014, UK.Google Scholar
IATA. Annual safety report 2019. (issued april 2020), 56th edition. Technical report, IATA, 2020. https://www.iata.org/en/publications/safety-report/ Google Scholar
IATA. Annual safety report 2020. (issued april 2021), 57th edition. Technical report, IATA, 2021. https://www.iata.org/en/publications/safety-report/ Google Scholar
IATA. Annual safety report 2021. (issued april 2022), 58th edition. Technical report, IATA, 2022. https://www.iata.org/en/publications/safety-report/ Google Scholar
ICAO. Safety management manual. Technical Report 9859, ICAO, 2018. https://www.icao.int/ Google Scholar
International Civil Aviation Organization (ICAO). Safety report 2020 edition. ICAO, 2020.Google Scholar
Illankoon, P. and Tretten, P. Judgemental errors in aviation maintenance, Cogn. Technol. Work, 2020, 22, (4), pp 769786. https://doi.org/10.1007/s10111-019-00609-9 CrossRefGoogle Scholar
Illankoon, P., Tretten, P. and Kumar, U. A prospective study of maintenance deviations using hfacs-me, Int. J. Ind. Ergon., 2019, 74, p 102852. https://doi.org/10.1016/j.ergon.2019.102852 CrossRefGoogle Scholar
Insley, J. and Turkoglu, C. A contemporary analysis of aircraft maintenance-related accidents and serious incidents, Aerospace, 2020, 7, (6), p 81. https://search.proquest.com/docview/2415189237 10.3390/aerospace7060081CrossRefGoogle Scholar
Janovec, M. and Mojžišová, K. Increasing aircraft maintenance safety by minimizing human error, Transp. Res. Procedia, 2024, 81, pp 118127. ISSN 2352-1465. 13th International Conference on Air Transport – INAIR 2024, Challenging the Status Quo in Aviation. https://www.sciencedirect.com/science/article/pii/S2352146524002631 10.1016/j.trpro.2024.11.013CrossRefGoogle Scholar
Jiang, W., Han, W., Zhou, J. and Huang, Z. Analysis of human factors relationship in hazardous chemical storage accidents, Int. J. Environ. Res. Public Health, 2020, 17, (17), pp 114.10.3390/ijerph17176217CrossRefGoogle ScholarPubMed
Johansen, L.I. and Rausand, M. Barrier management in the offshore oil and gas industry, J. Loss Prev. Process Indus., 2015, 34, pp 4955. https://doi.org/10.1016/j.jlp.2015.01.023 CrossRefGoogle Scholar
Kabashkin, I. and Perekrestov, V. Integrating big data and artificial intelligence in aircraft maintenance for enhanced efficiency and reliability, Transp. Res. Procedia (Online), 2025, 83, pp 601608.10.1016/j.trpro.2025.03.031CrossRefGoogle Scholar
Karunakaran, C. and Ashok, B. Impact of human factors in aircraft accident mitigation and aircraft maintenance training needs in post covid-19 aviation, Aircraft Eng., 2022, 94, (8), pp 12961302. https://www.emerald.com/insight/content/doi/10.1108/AEAT-10-2021-0300/full/html Google Scholar
Khan, F.N., Ayiei, A., Murray, J., Baxter, G. and Wild, G. A preliminary investigation of maintenance contributions to commercial air transport accidents, Aerospace, 2020, 7, (9), p 129. https://search.proquest.com/docview/2440417068 10.3390/aerospace7090129CrossRefGoogle Scholar
Kiger, E.M. and Varpio, L. Thematic analysis of qualitative data: Amee guide no. 131, Med. Teacher, 2020, 42, (8), pp 846854. https://www.tandfonline.com/doi/abs/10.1080/0142159X.2020.1755030 CrossRefGoogle Scholar
Kim, S.K., Lee, Y.H., Jang, T.I., Oh, Y.J. and Shin, K.H. An investigation on unintended reactor trip events in terms of human error hazards of Korean nuclear power plants, Ann. Nuclear Energy, 2014, 65, pp 223231. https://doi.org/10.1016/j.anucene.2013.11.009 CrossRefGoogle Scholar
Kourousis, K.I., Chatzi, A.V. and Giannopoullos, I. The airbus a320 family fan cowl door safety modification: a human factors scenario analysis, Aircraft Eng. Aerospace Technol., 2018, 90, (6), pp 967972.10.1108/AEAT-08-2017-0191CrossRefGoogle Scholar
Kıvanç, E., Tuzkaya, G. and Vayvay, Ö. Safety management system and risk-based approach in aviation maintenance: a systematic literature review, Safety Sci., 2025, 184, p 106755.10.1016/j.ssci.2024.106755CrossRefGoogle Scholar
Larouzée, J. Human Error and Defense in Depth: From the “Clambake” to the “Swiss Cheese”, Springer, 2017, pp 257268. ISBN 9783319587677.Google Scholar
Lauridsen, O., Lootz, E., Husebo, T. and Ersdal, G. Barrier management and the interaction between technical, operational and organisational barrier elements, SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility, Society of Petroleum Engineers, 2016. https://onepetro.org/conference-paper/SPE-179364-MS 10.2118/179364-MSCrossRefGoogle Scholar
Leveson, N. A new accident model for engineering safer systems, Safety Sci., 2004, 42, (4), pp 237270.10.1016/S0925-7535(03)00047-XCrossRefGoogle Scholar
Leveson, N.G. Engineering a Safer World: Systems Thinking Applied to Safety, The MIT Press, 2012. https://library.oapen.org/bitstream/20.500.12657/26043/1/1004042.pdf 10.7551/mitpress/8179.001.0001CrossRefGoogle Scholar
Lincoln, Y.S., Lynham, S.A. and Guba, E.G. Paradigmatic Controversies, Contradictions, and Emerging Confluences, Revisited, 5th ed., Sage, 2018, Los Angeles, CA, pp 213263. ISBN 9781506386706.Google Scholar
Liu, Y. Safety barriers: research advances and new thoughts on theory, engineering and management, J. Loss Prev. Process Ind., 2020, 67, p 104260. https://doi.org/10.1016/j.jlp.2020.104260 CrossRefGoogle Scholar
Martinussen, M. and Hunter, DR. Aviation Psychology and Human Factors, CRC Press Taylor & Francis Group, 2017. ISBN 978-1498757522.10.1201/9781315152974CrossRefGoogle Scholar
Masmoudi, M. and Haït, A. Fuzzy uncertainty modelling for project planning: application to helicopter maintenance, Int. J. Prod. Res., 2012, 50, (13), pp 35943611. https://www.tandfonline.com/doi/abs/10.1080/00207543.2012.670925 CrossRefGoogle Scholar
McLeod, R.W. Human factors in barrier management: hard truths and challenges, Process Safety Environ. Prot., 2017, 110, pp 3142. https://doi.org/10.1016/j.psep.2017.01.012 CrossRefGoogle Scholar
McLeod, R.W. and Bowie, P. Bowtie analysis as a prospective risk assessment technique in primary healthcare, Policy Pract. Health Safety, 2018, 16, (2), pp 177193. https://doi.org/10.1080/14773996.2018.1466460 CrossRefGoogle Scholar
Mendes, N., Vieira, J.G.V. and Mano, A.P. Risk management in aviation maintenance: A systematic literature review, Safety Sci., 2022, 153, p 105810. https://doi.org/10.1016/j.ssci.2022.105810 CrossRefGoogle Scholar
Miller, M. and Mrusek, B. The repairer reporting system for integrating human factors into sms in aviation maintenance, in Martins Arezes, P.M.F. (Ed), International Conference on Applied Human Factors and Ergonomics, Springer International Publishing, 2019, Cham, pp 447456.10.1007/978-3-319-94589-7_44CrossRefGoogle Scholar
Mogles, N., Padget, J. and Bosse, T. Systemic approaches to incident analysis in aviation: comparison of stamp, agent-based modelling and institutions, Safety Sci., 2018, 108, pp 5971.10.1016/j.ssci.2018.04.009CrossRefGoogle Scholar
Murie, C., Barcellini, F., Buchmann, W., Cuvelier, L., Bernard, F. and Paquin, R. Analyser les risques en maintenance aéronautique, un projet complexe de conception, in Société d’ Ergonomie de Langue Française (SELF), “L’activité et ses frontières”, Penser et agir sur les transformations de nos sociétés, 2020, pp 318323. https://hal-cnam.archives-ouvertes.fr/hal-03186748 Google Scholar
Norman, D.A. Categorization of action slips, Psychol. Rev., 1981, 88, (1), pp 115. http://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,ssodb=edselcAN=edselc.2-52.0-58149402993site=eds-livecustid=s1098328 10.1037/0033-295X.88.1.1CrossRefGoogle Scholar
PSA Norway. Principles for barrier management in the petroleum industry. barrier memorandum psa, 2017.Google Scholar
Okoli, C. A guide to conducting a standalone systematic literature review, Commun. Assoc. Inf. Syst., 2015, 37, p 43. https://search.proquest.com/docview/2500516926 Google Scholar
Okoli, C. A critical realist guide to developing theory with systematic literature reviews, 2015. http://www.econis.eu/PPNSET?PPN=1792130821 Google Scholar
Ordonez, L.D., Lehman, B. and Pittarello, A. Time-pressure Perception and Decision Making, 1st ed., Wiley-Blackwell, 2015, pp 519–42. ISBN 978-1118468395.Google Scholar
European Parliament and The Council Of The European Union. Commission regulation (eu) no 133/2014, Off. J. Eur. Union, 2014, 1, (582), pp 157. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1534340740546uri=CELEX:32010R0757 Google Scholar
Phillips, R.O., Kecklund, G., Anund, A. and Sallinen, M. Fatigue in transport: a review of exposure, risks, checks and controls, Transp. Rev., 2017, 37, (6), pp 742766. https://www.tandfonline.com/doi/abs/10.1080/01441647.2017.1349844 CrossRefGoogle Scholar
Pitblado, R., Fisher, M., Nelson, B., Fløtaker, H., Molazemi, K. and Stokke, A. Concepts for dynamic barrier management, J. Loss Prev. Process Ind., 2016, 43, pp 741746. https://doi.org/10.1016/j.jlp.2016.07.005 CrossRefGoogle Scholar
Rashid, H.S.J., Place, C.S. and Braithwaite, G.R. Investigating the investigations: a retrospective study in the aviation maintenance error causation, Cogn. Technol. Work, 2013, 15, (2), pp 171188. https://link.springer.com/article/10.1007/s10111-011-0210-7 10.1007/s10111-011-0210-7CrossRefGoogle Scholar
Rashid, H.S.J., Place, C.S., and Braithwaite, G.R. Eradicating root causes of aviation maintenance errors: introducing the ammp, Cogn. Technol. Work, 2014, 16, (1), pp 7190. https://link.springer.com/article/10.1007/s10111-012-0245-4 10.1007/s10111-012-0245-4CrossRefGoogle Scholar
Rasmussen, J. The role of error in organizing behaviour, Qual. Safety Health Care, 2003, 12, (5), pp 377383. https://doi.org/10.1136/qhc.12.5.377 CrossRefGoogle ScholarPubMed
Rasmussen, J. Human error and the problem of causality, Philos. Trans. R. Soc. London, 1990, 327, pp 449462.Google ScholarPubMed
Reason, J. Human Error, 20th ed., Cambridge University Press, 1990. ISBN 978-0521314190.10.1017/CBO9781139062367CrossRefGoogle Scholar
Reason, J. The Human Contribution: Unsafe Acts, Accidents and Heroic Recoveries, CRC Press Taylor & Francis Group, 2008.Google Scholar
Riccardo, P., Marilia, R., Paltrinieri, N., Massaiu, S., Costantino, F., Di Gravio, G. and Boring, R.L. Human reliability analysis: exploring the intellectual structure of a research field, Reliab. Eng. Syst. Safety, 2020, 203, p 107102. https://doi.org/10.1016/j.ress.2020.107102 Google Scholar
Rollenhagen, C. Event investigations at nuclear power plants in sweden: Reflections about a method and some associated practices, Safety Sci., 2011, 49, (1), pp 2126.10.1016/j.ssci.2009.12.012CrossRefGoogle Scholar
Rollenhagen, C., Westerlund, J., Lundberg, J. and Hollnagel, E. The context and habits of accident investigation practices: A study of 108 Swedish investigators, Safety Sci., 2010, 48, (7), pp 859867. https://doi.org/10.1016/j.ssci.2010.04.001 CrossRefGoogle Scholar
Rosales, L.S. Analysing Uncertainty and Delays in Aircraft Heavy Maintenance. PhD thesis, Alliance Manchester Business School, Aug 1 2016. https://research.manchester.ac.uk/en/studentTheses/6a64acb7-6780-4dc4-acc5-1497bcf8654b Google Scholar
Salmon, P.M., Cornelissen, M. and Trotter, M.J. Systems-based accident analysis methods: A comparison of accimap, hfacs, and stamp, Safety Sci., 2012, 50, (4), pp 11581170.10.1016/j.ssci.2011.11.009CrossRefGoogle Scholar
Santos, I.C.D., Vieira, A.M. and de Morais, P.R. Poor communication skills means high risk for aviation safety, Gestão Regionalidade, 2014, 30, (88), pp 123137. https://search.proquest.com/docview/1683989169 Google Scholar
Saward, J. and Stanton, N. Individual latent error detection and recovery in naval aircraft maintenance: introducing a proposal linking schema theory with a multi-process approach to human error research, Theoret. Issues Ergon. Sci., 2015, 16, (3), pp 255272.10.1080/1463922X.2014.969360CrossRefGoogle Scholar
Searle, J.R. The intentionality of intention and action, Cogn. Sci., 1980, 4, (1), pp 4770.10.1207/s15516709cog0401_3CrossRefGoogle Scholar
Senders, J.W. and Moray, N.P. Human Error: Cause, Prediction, and Reduction. Lawrence Erlbaum Associates, Inc, 1991. ISBN 0898595983.Google Scholar
Sklet, S. Safety barriers: definition, classification, and performance, J. Loss Prev. Process Ind., 2006, 19, (5), pp 494506.10.1016/j.jlp.2005.12.004CrossRefGoogle Scholar
Stroeve, S., Smeltink, J. and Kirwan, B. Assessing and advancing safety management in aviation, Safety (Basel), 2022, 8, (2), p 20. https://search.proquest.com/docview/2679828991 10.3390/safety8020020CrossRefGoogle Scholar
Theophilus, S.C., Esenowo, V.N., Arewa, A.O., Ifelebuegu, A.O., Nnadi, E.O. and Mbanaso, F.U. Human factors analysis and classification system for the oil and gas industry (hfacs-ogi), Reliab. Eng. Syst. safety, 2017, 167, pp 168176. https://doi.org/10.1016/j.ress.2017.05.036 CrossRefGoogle Scholar
Thoroman, B., Goode, N., Salmon, P. and Wooley, M. What went right? an analysis of the protective factors in aviation near misses, Ergonomics, 2019, 62, (2), pp 192203.10.1080/00140139.2018.1472804CrossRefGoogle ScholarPubMed
Tian, W., Caponecchia, C. and Kourousis, K. Using the functional resonance analysis method (fram) in aviation safety: a systematic review, J. Adv. Transp., 2020, 2020, (2020), pp 114.Google Scholar
Tonk, A. and Boussif, A. Application of systems theoretic accident model and processes in railway systems: a review, IEEE Access, 2024, 12, pp 9987299893.10.1109/ACCESS.2024.3429568CrossRefGoogle Scholar
Virovac, D., Domitrović, A. and Bazijanac, E. The influence of human factor in aircraft maintenance, PROMET - Traffic Transp., 2017, 29, (3), pp 257266.Google Scholar
Wachter, J.K. and Yorio, P.L. A system of safety management practices and worker engagement for reducing and preventing accidents: an empirical and theoretical investigation, Accid. Anal. Prev., 2014, 68, pp 117130. https://doi.org/10.1016/j.aap.2013.07.029 CrossRefGoogle ScholarPubMed
Walton, P. Artificial intelligence and the limitations of information, Information, 2018, 9, (12), p 332. https://www.proquest.com/docview/2582809085.10.3390/info9120332CrossRefGoogle Scholar
Waterson, P., Le Coze, J.C. and Andersen, H.B. Recurring themes in the legacy of Jens Rasmussen. Appl. Ergon., 2017, 59, pp 471482.10.1016/j.apergo.2016.10.002CrossRefGoogle ScholarPubMed
Wickens, C.D., Hollands, J.G., Banbury, S. and Parasuraman, R. Engineering Psychology and Human Performance, 4th ed., Taylor & Francis, 2016. ISBN 978-0205015603.10.4324/9781315665177CrossRefGoogle Scholar
Wiegmann, D.A. and Shappell, S.A. A Human Error Approach to Aviation Accident Analysis The Human Factors Analysis and Classification System, Ashgate Publishing Company, 2003, UK. ISBN 9780754618737.Google Scholar
Woods, D. Position paper, Bellagio Italy, NATO Conference on Human Error, 1983.Google Scholar
Woods, D.D., Dekker, S., Cook, R., Johannesen, L. and Sarter, N. Behind Human Error. CRC Press, 2010, Farnham. ISBN 9780754678342. https://search.ebscohost.com/login.aspx?direct=trueAuthType=ip,ssodb=e000xwwAN=389792site=eds-livecustid=s1098328 Google Scholar
Xiong, M., Wang, H., Wong, Y.D. and Hou, Z. Enhancing aviation safety and mitigating accidents: A study on aviation safety hazard identification, Adv. Eng. Inf., 2024, 62, p 102732.10.1016/j.aei.2024.102732CrossRefGoogle Scholar
Yazgan, E. Development taxonomy of human risk factors for corporate sustainability in aviation sector, Aircraft Eng. Aerospace Technol., 2018, 90, (6), pp 10121022.10.1108/AEAT-04-2018-0133CrossRefGoogle Scholar
Yiannakides, D. and Sergiou, C. Human Factors in Aircraft Maintenance, 1st ed., vol. 1, CRC Press, 2019, Boca Raton, FL. ISBN 9780367230111.10.1201/9780429280887CrossRefGoogle Scholar
Yilmaz, A.K. Strategic approach to managing human factors risk in aircraft maintenance organization: risk mapping, Aircraft Eng., 2019, 91, (4), pp 654668.Google Scholar
Yoe, C. Principles of Risk Analysis, 2nd ed., CRC Press, 2019, USA. ISBN 9780429667619. http://digital.casalini.it/9780429667619 10.1201/9780429021121CrossRefGoogle Scholar