Hostname: page-component-cb9f654ff-5kfdg Total loading time: 0 Render date: 2025-09-02T21:41:18.357Z Has data issue: false hasContentIssue false

Design and experimental study of a helicopter seat cushion for vibration isolation

Published online by Cambridge University Press:  26 August 2025

E. C. Gülünay*
Affiliation:
Erciyes University, Graduate School of Natural and Applied Sciences, Kayseri, Türkiye
M. Soylak
Affiliation:
Erciyes University, Faculty of Aeronautics and Astronautics, Kayseri, Türkiye
*
Corresponding author: E. C. Gülünay; Email: 4015230066@erciyes.edu.tr

Abstract

Vibration is defined as oscillation away from equilibrium and is a significant problem in aviation. Vibration is transmitted to the flight crew through all contact surfaces, including flight controls, floor and seats. Various effects are known to occur on flight crew exposed to vibration, with fatigue and low back pain being the most common vibration-related health complaints. Studies have shown that prolonged exposure to vibration or accumulated vibration can increase the risk of chronic low back pain and injury by increasing the exposure dose. In particular, there is data that helicopter pilots have more low back pain than fixed wing pilots. This is due to the fact that helicopters have much more vibration-generating factors due to the working principle of helicopters and the posture of helicopter pilots is slightly forward-leaning. In this study, an isolator cushion with a quasi-zero stiffness mechanism was developed, manufactured and tested to reduce the transmission of vibration to the pilot and flight crew during the operation of the Sikorsky UH-60 helicopter. The use of the specially designed cushion led to a noticeable reduction in vibration exposure under various flight conditions.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Technical Committee: ISO/TC 108/SC 4: ISO 2631-1:1997 Mechanical vibration and shock — Evaluation of human exposure to whole-body vibration — Part 1: General requirements, 1995, https://www.iso.org/standard/7612.html Google Scholar
Bovenzi, M. Metrics of whole-body vibration and exposure-response relationship for low back pain in professional drivers: A prospective cohort study, Int Arch Occup Environ Health 2009, 82, pp 893917. doi: 10.1007/S00420-008-0376-3 CrossRefGoogle ScholarPubMed
Hansen, B. and Wagstaff, A.S. Low back pain in Norwegian helicopter aircrew, Aviat Space Environ Med 2001, 72, pp 161164.Google ScholarPubMed
Chen, Y., Wickramasinghe, V. and Zimcik, D.G. Development of adaptive helicopter seat for aircrew vibration reduction, J Intell Mater Syst Struct 2011, 22, pp 489502. doi: 10.1177/1045389X11400343 CrossRefGoogle Scholar
Pope, M.H., Wilder, D.G. and Magnusson, M. Possible mechanisms of low back pain due to whole-body vibration, J Sound Vib 1998, 215, pp 687697. doi: 10.1006/jsvi.1998.1698 CrossRefGoogle Scholar
Hansson, T., Magnusson, M. and Broman, H. Back muscle fatigue and seated whole body vibrations: An experimental study in man, Clin Biomech 1991, 6, pp 173178. doi: 10.1016/0268-0033(91)90030-T CrossRefGoogle ScholarPubMed
Li, Z., Zhang, M., Chen, G., Luo, S., Liu, F. and Li, J. Wavelet analysis of lumbar muscle oxygenation signals during whole-body vibration: Implications for the development of localized muscle fatigue, Eur J Appl Physiol 2012, 112, pp 31093117. doi: 10.1007/S00421-011-2298-0 CrossRefGoogle ScholarPubMed
Blüthner, R., Hinz, B., Menzel, G. and Seidel, H. Back muscle response to transient whole-body vibration, Int J Ind Ergon 1993, 12, pp 4959. doi: 10.1016/0169-8141(93)90037-E CrossRefGoogle Scholar
Guo, L.X., Dong, R.C., Yuan, S., Feng, Q.Z. and Fan, W. Influence of seat lumbar support adjustment on muscle fatigue under whole body vibration: An in vivo experimental study, Technol Heal Care 2022, 30, pp 455467. doi: 10.3233/THC-212840 CrossRefGoogle ScholarPubMed
Ma, X., Li, Y., Cao, Y. and Zhou, M. A nonlinear biodynamic model of helicopter seat: ATD system exposed to vertical impact for predicting the risk of injury in airworthiness certification, Nonlinear Dyn 2024, 113, pp 61976233. doi: 10.1007/S11071-024-10454-9 CrossRefGoogle Scholar
Desai, R., Papaioannou, G. and Happee, R. Vibration transmission through the seated human body captured with a computationally efficient multibody model, Multibody Syst Dyn 2024, pp 134. doi: 10.1007/S11044-024-10025-1 CrossRefGoogle Scholar
Tamer, A., Zanoni, A., Cocco, A. and Masarati, P. A numerical study of vibration-induced instrument reading capability degradation in helicopter pilots, CEAS Aeronaut J 2021, 12, pp 427440. doi: 10.1007/S13272-021-00516-8 CrossRefGoogle Scholar
Tamer, A., Zanoni, A., Cocco, A. and Masarati, P. A generalized index for the assessment of helicopter pilot vibration exposure, Vibration 2021, 4, pp 133150. doi: 10.3390/VIBRATION4010012 CrossRefGoogle Scholar
Lis, A.M., Black, K.M., Korn, H. and Nordin, M. Association between sitting and occupational LBP, Eur Spine J 2006, 16, pp 283287. doi: 10.1007/S00586-006-0143-7 CrossRefGoogle ScholarPubMed
Hill, T.E., Desmoulin, G.T. and Hunter, C.J. Is vibration truly an injurious stimulus in the human spine? J Biomech 2009, 42, pp 26312635. doi: 10.1016/j.jbiomech.2009.10.001 CrossRefGoogle ScholarPubMed
Bovenzi, M. and Hulshof, C.T.J. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain (1986-1997), Int Arch Occup Environ Health 1999, 72, pp 351365. doi: 10.1007/S004200050387 CrossRefGoogle ScholarPubMed
Hulshof, C., Veldhuijzen van Zanten, B. Whole-body vibration and low-back pain - A review of epidemiologic studies, Int Arch Occup Environ Health 1987, 59, 205220. doi: 10.1007/BF00377733 CrossRefGoogle ScholarPubMed
Pope, M.H. A review of studies on seated whole body vibration and low back pain, Proc Inst Mech Eng Part H J Eng Med 1999, 213, pp 435446. doi: 10.1243/0954411991535040 CrossRefGoogle ScholarPubMed
Kumar, S. Vibration in operating heavy haul trucks in overburden mining, Appl Ergon 2004, 35, pp 509520. doi: 10.1016/J.APERGO.2004.06.009 CrossRefGoogle ScholarPubMed
Bongers, P.M., Hulshof, C.T.J., Dljkstra, L., Boshuizen, H.C., Groenhout, H.J.M. and Valken, E. Back pain and exposure to whole body vibration in helicopter pilots, Ergonomics 1990, 33, pp 10071026. doi: 10.1080/00140139008925309 CrossRefGoogle ScholarPubMed
Byeon, J.H., Kim, J.W., Jeong, H.J., Sim, Y.J., Kim, D.K., Choi, J.K., Im, H.J. and Kim, G.C. Degenerative changes of spine in helicopter pilots, Ann Rehabil Med 2013, 37, pp 706712. doi: 10.5535/ARM.2013.37.5.706 CrossRefGoogle ScholarPubMed
Van Leusden, A.J., Prendergast, P.R. and Gray, G.W. Permanent grounding and flying restrictions in Canadian Forces pilots: A 10-year review, Aviat Sp Environ Med 1991, 62, pp 513516.Google ScholarPubMed
Froom, P., Barzilay, J., Caine, Y., Margaliot, S., Forecast, D. and Gross, M. Low back pain in pilots, Aviat Sp Environ Med 1986, 58, pp 461467.Google Scholar
Landau, D.A., Chapnick, L., Yoffe, N., Azaria, B., Goldstein, L. and Atar, E. Cervical and lumbar MRI findings in aviators as a function of aircraft type, Aviat Sp Environ Med 2006, 77, pp 11581161.Google ScholarPubMed
Phillips, A. The scope of back pain in navy helicopter pilots, Master’s thesis, Institutional Archive of the Naval Postgraduate School, 2011.Google Scholar
Bridger, R.S., Groom, M.R., Jones, H., Pethybridge, R.J. and Pullinger, N. Task and postural factors are related to back pain in helicopter pilots, Aviat Sp Environ Med 2002, 73, 805811.Google ScholarPubMed
Thomae, M.K., Porteous, J.E., Brock, J.R., Allen, G.D., Heller, R.F. Back pain in Australian military helicopter pilots: A preliminary study, Aviat Sp Environ Med 1998, 69, pp 468473.Google ScholarPubMed
Bowden, T. Back pain in helicopter aircrew: A literature review, Aviat Space Environ Med 1987, 58, pp 461467.Google ScholarPubMed
Burström, L., Nilsson, T. and Wahlström, J. Whole-body vibration and the risk of low back pain and sciatica: A systematic review and meta-analysis, Int Arch Occup Environ Health 2015, 88, pp 403418. doi: 10.1007/S00420-014-0971-4 CrossRefGoogle ScholarPubMed
Lings, S. and Leboeuf-Yde, C. Whole-body vibration and low back pain: A systematic, critical review of the epidemiological literature 1992-1999, Int Arch Occup Environ Health 2000, 73, 290297. doi: 10.1007/S004200000118 CrossRefGoogle ScholarPubMed
Bainbridge, A., Moutsos, I., Johnson, A., Mcmenemy, L., Ramasamy, A. and Masouros, S.D. Whole body vibrations and lower back pain: A systematic review of the current literature, BMJ Mil Heal 2025, e002801. doi: 10.1136/MILITARY-2024-002801 CrossRefGoogle Scholar
Zhang, B., Yin, X., Li, J. and Tong, R. Incorporating ergonomic and psychosocial stressors: A comprehensive model for assessing miners’ work-related musculoskeletal disorders, Saf Sci 2024, 176, p 106564. doi: 10.1016/J.SSCI.2024.106564 CrossRefGoogle Scholar
Feng, C., Liu, S., Wanyan, X., Dang, Y., Wang, Z. and Qian, C. Wave-based exploration of sensitive EEG features and classification of situation awareness, Aeronaut J 2024, 128, pp 25612576. doi: 10.1017/AER.2024.36 CrossRefGoogle Scholar
Marul, M. and Karabulut, A. Vibration effects examination of cushions used on tractor driving seat, J Theor Appl Mech 2018, 42, pp 3140. doi: 10.2478/V10254-012-0018-8 CrossRefGoogle Scholar
Tamer, A., Muscarello, V., Masarati, P. and Quaranta, G. Evaluation of vibration reduction devices for helicopter ride quality improvement, Aerosp Sci Technol 2019, 95, p 105456. doi: 10.1016/J.AST.2019.105456 CrossRefGoogle Scholar
Tamer, A., Masarati, P., Zilletti, M. and Bottasso, L. Experimental and numerical investigation of a novel strut-mounted roller-screw inerter for helicopter vibration attenuation, Aerosp Sci Technol 2025, 162, p 110172. doi: 10.1016/J.AST.2025.110172 CrossRefGoogle Scholar
Zanoni, A., Cocco, A. and Masarati, P. Multibody dynamics analysis of the human upper body for rotorcraft–pilot interaction, Nonlinear Dyn 2020, 102, pp 15171539. doi: 10.1007/S11071-020-06005-7 CrossRefGoogle Scholar
Tamer, A., Zanoni, A., Muscarello, V., Cocco, A., Quaranta, G. and Masarati, P. Biodynamic modeling techniques for rotorcraft comfort evaluation, Aerotec Missili Spaz 2019, 98, pp 147158. doi: 10.1007/S42496-019-00014-5 CrossRefGoogle Scholar
Xu, D., Zhang, Y., Zhou, J. and Lou, J. On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator, JVC/J Vib Control 2014, 20, pp 23142325. doi: 10.1177/1077546313484049 CrossRefGoogle Scholar
Sui, G., Zhang, X., Hou, S., Shan, X., Hou, W. and Li, J. Quasi-zero stiffness isolator suitable for low-frequency vibration, Machines 2023, 11, p 512. doi: 10.3390/MACHINES11050512 CrossRefGoogle Scholar
Xu, D., Yu, Q., Zhou, J. and Bishop, S.R. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic, J Sound Vib 2013, 332, pp 33773389. doi: 10.1016/J.JSV.2013.01.034 CrossRefGoogle Scholar
Zhou, J., Wang, X., Xu, D. and Bishop, S. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms, J Sound Vib 2015, 346, pp 5369. doi: 10.1016/J.JSV.2015.02.005 CrossRefGoogle Scholar
Chen, S., Tan, X., Hu, J., Zhu, S., Wang, B., Wang, L., Jin, Y. and Wu, L. A novel gradient negative stiffness honeycomb for recoverable energy absorption, Compos Part B Eng 2021, 215, p 108745. doi: 10.1016/J.COMPOSITESB.2021.108745 CrossRefGoogle Scholar
Supplementary material: File

Gülünay and Soylak supplementary material

Gülünay and Soylak supplementary material
Download Gülünay and Soylak supplementary material(File)
File 8 MB