Skip to main content Accessibility help
×
  • Coming soon
Publisher:
Cambridge University Press
Expected online publication date:
April 2026
Print publication year:
2026
Online ISBN:
9781009760508

Book description

Spanning elementary, algebraic, and analytic approaches, this book provides an introductory overview of essential themes in number theory. Designed for mathematics students, it progresses from undergraduate-accessible material requiring only basic abstract algebra to graduate-level topics demanding familiarity with algebra and complex analysis. The first part covers classical themes: congruences, quadratic reciprocity, partitions, cryptographic applications, and continued fractions with connections to quadratic Diophantine equations. The second part introduces key algebraic tools, including Noetherian and Dedekind rings, then develops the finiteness of class groups in number fields and the analytic class number formula. It also examines quadratic fields and binary quadratic forms, presenting reduction theory for both definite and indefinite cases. The final section focuses on analytic methods: L-series, primes in arithmetic progressions, and the Riemann zeta function. It addresses the Prime Number Theorem and explicit formulas of von Mangoldt and Riemann, equipping students with foundational knowledge across number theory's major branches.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.