Strongly regular graphs lie at the intersection of statistical design, group theory, finite geometry, information and coding theory, and extremal combinatorics. This monograph collects all the major known results together for the first time in book form, creating an invaluable text that researchers in algebraic combinatorics and related areas will refer to for years to come. The book covers the theory of strongly regular graphs, polar graphs, rank 3 graphs associated to buildings and Fischer groups, cyclotomic graphs, two-weight codes and graphs related to combinatorial configurations such as Latin squares, quasi-symmetric designs and spherical designs. It gives the complete classification of rank 3 graphs, including some new constructions. More than 100 graphs are treated individually. Some unified and streamlined proofs are featured, along with original material including a new approach to the (affine) half spin graphs of rank 5 hyperbolic polar spaces.
‘This is a book the mathematics world has long been waiting for … [The book] is by two of the leading researchers in the field. An interested reader will find almost everything on strongly regular graphs.’
Ulrich Tamm Source: MathSciNet
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.