Skip to main content Accessibility help
×
  • Cited by 71
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      December 2009
      January 2008
      ISBN:
      9780511619632
      9780521854429
      Dimensions:
      (253 x 177 mm)
      Weight & Pages:
      0.55kg, 212 Pages
      Dimensions:
      Weight & Pages:
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    When is a random network (almost) connected? How much information can it carry? How can you find a particular destination within the network? And how do you approach these questions - and others - when the network is random? The analysis of communication networks requires a fascinating synthesis of random graph theory, stochastic geometry and percolation theory to provide models for both structure and information flow. This book is the first comprehensive introduction for graduate students and scientists to techniques and problems in the field of spatial random networks. The selection of material is driven by applications arising in engineering, and the treatment is both readable and mathematically rigorous. Though mainly concerned with information-flow-related questions motivated by wireless data networks, the models developed are also of interest in a broader context, ranging from engineering to social networks, biology, and physics.

    Reviews

    'The balance between intuition and rigor is ideal, in my opinion, and reading the book is an enjoyable and highly rewarding endeavor … this book will be useful to physicists, mathematicians, and computer scientists who look at random graph models in which point locations affect the shape and properties of the resulting network: physicists will acquaint themselves with complex networks having rich modeling capabilities (e.g. models for random interaction particle systems such as spin glasses), mathematicians may discover connections of the networks with formal systems (much like the connection of the classical Erdős–Rényi random graph properties with first- and second-order logic), and computer scientists will greatly appreciate the applicability of the theory given in the book to the study of realistic, ad hoc mobile networks in which network node connections change rapidly and unpredictably as a function of the geometry of the current node positions.'

    Yannis Stamatiou Source: Mathematical Reviews

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    Metrics

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.