Metrics
Full text views
Full text views help
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
Ramification groups of local fields are essential tools for studying boundary behaviour in geometric objects and the degeneration of Galois representations. This book presents a comprehensive development of the recently established theory of upper ramification groups of local fields with imperfect residue fields, starting from the foundations. It also revisits classical theory, including the Hasse–Arf theorem, and offers an optimal generalisation via log monogenic extensions. The conductor of Galois representations, defined through ramification groups, has numerous geometric applications, notably the celebrated Grothendieck–Ogg–Shafarevich formula. A new proof of the Deligne–Kato formula is also provided; this result plays a pivotal role in the theory of characteristic cycles. With a foundational understanding of commutative rings and Galois theory, graduate students and researchers will be well-equipped to engage with this rich area of arithmetic geometry.
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.