The study of arithmetic differential operators is a novel and promising area of mathematics. This complete introduction to the subject starts with the basics: a discussion of p-adic numbers and some of the classical differential analysis on the field of p-adic numbers leading to the definition of arithmetic differential operators on this field. Buium's theory of arithmetic jet spaces is then developed succinctly in order to define arithmetic operators in general. Features of the book include a comparison of the behaviour of these operators over the p-adic integers and their behaviour over the unramified completion, and a discussion of the relationship between characteristic functions of p-adic discs and arithmetic differential operators that disappears as soon as a single root of unity is adjoined to the p-adic integers. This book is essential reading for researchers and graduate students who want a first introduction to arithmetic differential operators over the p-adic integers.
"In this monograph the authors give an interesting introduction tot he theory of arithmetic differential operators over the p-adic integers Zp.
Victor Alexandru, Mathematical Reviews
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.